Investigation on milling chatter identification at early stage with variance ratio and Hilbert–Huang transform

ORIGINAL ARTICLE
  • 97 Downloads

Abstract

Chatter occurs as an unexpected and unstable phenomenon in milling process, imposing an extremely negative effect on the workpiece and machining system. Therefore, a method that can identify chatter at an early stage is desperately needed. However, some aspects in terms of effectiveness, robustness, and practicality with existing methods deserve further improvement. In this paper, the characteristics of chatter in different stages are investigated. Considering the properties of a vibration signal when the onset of chatter occurs, an adaptive filter is designed to remove the spindle speed-related frequency components, and the chatter-related components can be amplified simultaneously with the filter. Next, the variance ratio (VR) of the filtered signal series to the original signal series is defined as the chatter indicator, which is very sensitive to chatter. After chatter is detected, a time frequency analysis method based on ensemble empirical mode decomposition (EEMD) and the Hilbert–Huang transform (HHT) is introduced to estimate the dominant chatter frequency. Milling experiments with different configurations of cutting conditions are performed and the results show that all the chatter can be detected at an early stage. In addition, the transients of the vibration signal caused by discontinuity of workpiece geometry or inhomogeneous material can be distinguished from the chatter.

Keywords

Chatter Dominant chatter frequency Adaptive filter Variance ratio Hilbert–Huang transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant no. 51575434 and National Science and Technology Major Project of China under grant no. 2015ZX04014021-02. The authors express their gratitude for support here.

References

  1. 1.
    Quintana G, Ciurana J (2011) Chatter in machining processes: a review. Int J Mach Tools Manuf 51(5):363–376.  https://doi.org/10.1016/j.ijmachtools.2011.01.001 CrossRefGoogle Scholar
  2. 2.
    Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann-Manuf Technol 53(2):619–642.  https://doi.org/10.1016/S0007-8506(07)60032-8 CrossRefGoogle Scholar
  3. 3.
    Wan M, Ma YC, Zhang WH, Yang Y (2015) Study on the construction mechanism of stability lobes in milling process with multiple modes. Int J Adv Manuf Technol 79(1–4):589–603.  https://doi.org/10.1007/s00170-015-6829-4 CrossRefGoogle Scholar
  4. 4.
    Wan M, Feng J, Ma YC, Zhang WH (2017) Identification of milling process damping using operational modal analysis. Int J Mach Tools Manuf 122:120–131.  https://doi.org/10.1016/j.ijmachtools.2017.06.006 CrossRefGoogle Scholar
  5. 5.
    Wan M, Ma YC, Feng J, Zhang WH (2016) Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces. Int J Mech Sci 114:120–131.  https://doi.org/10.1016/j.ijmecsci.2016.05.010 CrossRefGoogle Scholar
  6. 6.
    Yang Y, Zhang WH, Ma YC, Wan M (2016) Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces. Int J Mach Tools Manuf 109:36–48.  https://doi.org/10.1016/j.ijmachtools.2016.07.002 CrossRefGoogle Scholar
  7. 7.
    Dijk NJMV, Doppenberg EJJ, Faassen RPH, Wouw NVD, Oosterling JAJ, Nijmeijer H (2010) Automatic in-process chatter avoidance in the high-speed milling process. J Dyn Syst-T ASME 132(3):333–342Google Scholar
  8. 8.
    Tsai NC, Chen DC, Lee RM (2010) Chatter prevention for milling process by acoustic signal feedback. Int J Adv Manuf Technol 47(9–12):1013–1021.  https://doi.org/10.1007/s00170-009-2245-y CrossRefGoogle Scholar
  9. 9.
    Schmitz TL (2003) Chatter recognition by a statistical evaluation of the synchronously sampled audio signal. J Sound Vib 262(3):721–730.  https://doi.org/10.1016/S0022-460X(03)00119-6 CrossRefGoogle Scholar
  10. 10.
    Cao H, Yue Y, Chen X, Zhang X (2017) Chatter detection in milling process based on synchro squeezing transform of sound signals. Int J Adv Manuf Technol 89(9–12): 2747–2755.  https://doi.org/10.1007/s00170-016-9660-7
  11. 11.
    Thaler T, Potočnik P, Bric I, Govekar E (2014) Chatter detection in band sawing based on discriminant analysis of sound features. Appl Acoust 77:114–121.  https://doi.org/10.1016/j.apacoust.2012.12.004 CrossRefGoogle Scholar
  12. 12.
    Kuljanic E, Sortino M, Totis G (2008) Multisensor approaches for chatter detection in milling. J Sound Vib 312(4):672–693.  https://doi.org/10.1016/j.jsv.2007.11.006 CrossRefGoogle Scholar
  13. 13.
    Altintas Y, Eynian M, Onozuka H (2008) Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann-Manuf Technol 57(1):371–374.  https://doi.org/10.1016/j.cirp.2008.03.048 CrossRefGoogle Scholar
  14. 14.
    Rafal R, Pawel L, Krzysztof K, Bogdan K, Jerzy W (2015) Chatter identification methods on the basis of time series measured during titanium superalloy milling. Int J Mech Sci 99:196–207.  https://doi.org/10.1016/j.ijmecsci.2015.05.013 CrossRefGoogle Scholar
  15. 15.
    Zhang Z, Li H, Meng G, Tu X, Cheng C (2016) Chatter detection in milling process based on the energy entropy of VMD and WPD. Int J Mach Tools Manuf 108:106–112.  https://doi.org/10.1016/j.ijmachtools.2016.06.002 CrossRefGoogle Scholar
  16. 16.
    Wang G, Dong H, Guo Y, Ke Y (2017) Early chatter identification of robotic boring process using measured force of dynamometer. Int J Adv Manuf Technol 1:10.  https://doi.org/10.1007/s00170-017-0941-6
  17. 17.
    Feng J, Sun Z, Jiang Z, Yang L (2016) Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography. Int J Adv Manuf Technol 82(9–12):1909–1920.  https://doi.org/10.1007/s00170-015-7509-0 CrossRefGoogle Scholar
  18. 18.
    Vela-Martínez L, Jáuregui-Correa JC, Álvarez-Ramírez J (2009) Characterization of machining chattering dynamics: an R/S scaling analysis approach. Int J Mach Tools Manuf 49(11):832–842.  https://doi.org/10.1016/j.ijmachtools.2009.05.010 CrossRefGoogle Scholar
  19. 19.
    Cao H, Zhou K, Chen X (2015) Chatter identification in end milling process based on EEMD and nonlinear dimensionless indicators. Int J Mach Tools Manuf 92:52–59.  https://doi.org/10.1016/j.ijmachtools.2015.03.002 CrossRefGoogle Scholar
  20. 20.
    Fu Y, Zhang Y, Zhou H, Li D, Liu H, Qiao H, Wang X (2016) Timely online chatter detection in end milling process. Mech Syst Signal Process 75:668–688.  https://doi.org/10.1016/j.ymssp.2016.01.003 CrossRefGoogle Scholar
  21. 21.
    Li Y, Zhou S, Lin J, Wang X (2017) Regenerative chatter identification in grinding using instantaneous nonlinearity indicator of servomotor current signal. Int J Adv Manuf Technol 89(1–4):779–790.  https://doi.org/10.1007/s00170-016-9117-z
  22. 22.
    Liu Y, Wang X, Lin J, Zhao W (2016) Early chatter detection in gear grinding process using servo feed motor current. Int J Adv Manuf Technol 83(9–12):1801–1810.  https://doi.org/10.1007/s00170-015-7687-9 CrossRefGoogle Scholar
  23. 23.
    Faassen R (2007) Chatter prediction and control for high-speed milling. Eindhoven University of TechnologyGoogle Scholar
  24. 24.
    Jia G, Wu B, Hu Y, Xie F, Liu A (2013) A synthetic criterion for early recognition of cutting chatter. Sci China Technol Sci 56(11):2870–2876.  https://doi.org/10.1007/s11431-013-5360-9 CrossRefGoogle Scholar
  25. 25.
    Lamraoui M, Barakat M, Thomas M, Badaoui ME (2015) Chatter detection in milling machines by neural network classification and feature selection. J Sound Vib 21(7):1251–1266Google Scholar
  26. 26.
    Ma L, Melkote SN, Castle JB (2013) A model-based computationally efficient method for on-line detection of chatter in milling. J Manuf Sci E-T ASME 135(3):031007CrossRefGoogle Scholar
  27. 27.
    Shao Y, Deng X, Yuan Y, Mechefske CK, Chen Z (2014) Characteristic recognition of chatter mark vibration in a rolling mill based on the non-dimensional parameters of the vibration signal. J Mech Sci Technol 28(6):2075–2080.  https://doi.org/10.1007/s12206-014-0106-6 CrossRefGoogle Scholar
  28. 28.
    Tangjitsitcharoen S (2009) In-process monitoring and detection of chip formation and chatter for CNC turning. J Mater Process Technol 209(10):4682–4688.  https://doi.org/10.1016/j.jmatprotec.2008.10.054 CrossRefGoogle Scholar
  29. 29.
    Zhang CL, Yue X, Jiang YT, Zheng W (2010) A hybrid approach of ANN and HMM for cutting chatter monitoring. Adv Mater 97-101:3225–3232Google Scholar
  30. 30.
    Shao Q, Feng CJ (2012) Pattern recognition of chatter gestation based on hybrid PCA-SVM. Appl Mech Mater 120:190–194CrossRefGoogle Scholar
  31. 31.
    Yao Z, Mei D, Chen Z (2010) On-line chatter detection and identification based on wavelet and support vector machine. J Mater Process Technol 210(5):713–719.  https://doi.org/10.1016/j.jmatprotec.2009.11.007 CrossRefGoogle Scholar
  32. 32.
    Tarng YS, Li TC, Chen MC (1994) On-line drilling chatter recognition and avoidance using an ART2—a neural network. Int J Mach Tools Manuf 34(7):949–957.  https://doi.org/10.1016/0890-6955(94)90027-2 CrossRefGoogle Scholar
  33. 33.
    Cao H, Zhou K, Chen X, Zhang X (2017) Early chatter detection in end milling based on multi-feature fusion and 3σ criterion. Int J Adv Manuf Technol 1–4:1–11Google Scholar
  34. 34.
    Kuljanic E, Totis G, Sortino M (2009) Development of an intelligent multisensor chatter detection system in milling. Mech Syst Signal Process 23(5):1704–1718.  https://doi.org/10.1016/j.ymssp.2009.01.003 CrossRefGoogle Scholar
  35. 35.
    Kwak JS, Ha MK (2004) Intelligent diagnostic technique of machining state for grinding. Int J Adv Manuf Technol 23(5–6):436–443.  https://doi.org/10.1007/s00170-003-1899-0 CrossRefGoogle Scholar
  36. 36.
    Munoa J, Beudaert X, Dombovari Z, Altintas Y, Budak E, Brecher C, Stepan G (2016) Chatter suppression techniques in metal cutting. CIRP Ann-Manuf Technol 65(2):785–808.  https://doi.org/10.1016/j.cirp.2016.06.004 CrossRefGoogle Scholar
  37. 37.
    Tarng YS, Li TC (1994) The change of spindle speed for the avoidance of chatter in end milling. J Mater Process Tech 41(2):227–236.  https://doi.org/10.1016/0924-0136(94)90063-9 CrossRefGoogle Scholar
  38. 38.
    Sun Y, Zhuang C, Xiong Z (2014) Real-time chatter detection using the weighted wavelet packet entropy. IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1652–1657.  https://doi.org/10.1109/AIM.2014.6878321
  39. 39.
    Choi T, Shin YC (2003) On-line chatter detection using wavelet-based parameter estimation. J Manuf Sci E-T ASME 125(1):21–28CrossRefGoogle Scholar
  40. 40.
    Wang L, Liang M (2009) Chatter detection based on probability distribution of wavelet modulus maxima. Robot Cim-Int Manuf 25(6):989–998.  https://doi.org/10.1016/j.rcim.2009.04.011 CrossRefGoogle Scholar
  41. 41.
    Lange JH, Abu-Zahra NH (2002) Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves. Int J Adv Manuf Tech 20(4):248–254.  https://doi.org/10.1007/s001700200149 CrossRefGoogle Scholar
  42. 42.
    Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(01):1–41.  https://doi.org/10.1142/S1793536909000047 CrossRefGoogle Scholar
  43. 43.
    Cao H, Lei Y, He Z (2013) Chatter identification in end milling process using wavelet packets and Hilbert–Huang transform. Int J Mach Tools Manuf 69:11–19.  https://doi.org/10.1016/j.ijmachtools.2013.02.007 CrossRefGoogle Scholar
  44. 44.
    Haykin SS (2008) Adaptive filter theory. Pearson Education IndiaGoogle Scholar
  45. 45.
    Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. P Math Phy Eng Sci 454(1971):903–995.  https://doi.org/10.1098/rspa.1998.0193 MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Carbajo ES, Carbajo RS, Mc Goldrick C, Basu B (2014) ASDAH: an automated structural change detection algorithm based on the Hilbert–Huang transform. Mech Syst Signal Process 47(1):78–93.  https://doi.org/10.1016/j.ymssp.2013.06.010 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Education Ministry for Modern Design & Rotor-Bearing SystemXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations