Advertisement

Effect of temperatures during forming in single point incremental forming

  • Pranav Gupta
  • Jacob Jeswiet
ORIGINAL ARTICLE

Abstract

In this article, the temperatures at sheet-tool interface are observed with non-contact temperature sensors in single point incremental forming at high relative tool velocities. A flat-ended tool was used to form AA5754-H32 sheets, and the results were recorded to study the heat generation from relative tool motion over the sheet metal surface. This paper proposes a new geometry to study the effects of temperature on formability and resulting geometrical errors. The regions of large geometrical errors are presented in cross-sectional and isometric views in colour contrasts. As the tool moves along a prescribed path, a moving comet type temperature structure is observed with two heat generation zones for the first few step downs. The resulting microstructures are observed for each of the following cases and the disparities are reported. Generally, the blankholder is assumed to be at a constant temperature. Results show this is not true; the actual temperature rises with a heat loss to the blankholder via backing plate. High rotation speeds are used, with an upper limit being observed, before forming of sheet metal becomes untenable. At this limit, high wear followed by lubricant fuming is observed. The result at higher rotational speeds is similar to friction stir welding, which are explained in detail by the microstructures. Surface roughness of the formed components as a response to the high tool linear speeds with flat tools is also presented.

Keywords

Single point incremental forming SPIF Microstructure Geometrical errors Surface roughness Temperature Flat tool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank Alexander Szekeres, Charlie Cooney and Onno Oosten.

References

  1. 1.
    Abass KI (2017) Contact statuses distributions of flat forming tool profile effect in incremental forming process by finite element analysis. In: Sltineanu L, Nagit G, Dodun O, Merticaru V, Coteata M, Ripanu M, Mihalache A, Boca M, Ibanescu R, Panait C, Oancea G, Kyratsis P (eds) MATEC Web of Conferences.  https://doi.org/https://doi.org/10.1051/matecconf/201711202003, vol 112. EDP Sciences
  2. 2.
    Adams D (2013) Improvements on single point incremental forming through electrically assisted forming, Contact Area Prediction and Tool Development. Ph.D. thesis. Queen’s University, KingstonGoogle Scholar
  3. 3.
    Al-Ghamdi KA, Hussain G (2015) Threshold tool-radius condition maximizing the formability in SPIF considering a variety of materials: experimental and FE investigations. Int J Mach Tools Manuf 88:82–94.  https://doi.org/10.1016/j.ijmachtools.2014.09.005. http://www.sciencedirect.com/science/article/pii/S0890695514001370 CrossRefGoogle Scholar
  4. 4.
    Ambrogio G, Filice L, Gagliardi F, Micari F (2005) Three-dimensional FE simulation of single point incremental forming: experimental evidences and process design improving. Proc of the eighth. http://congress.cimne.upc.es/complas05/admin/Files/FilePaper/p69.pdf
  5. 5.
    Ambrogio G, Filice L, Manco G (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann - Manuf Technol 57(1):257–260.  https://doi.org/10.1016/j.cirp.2008.03.066. http://www.sciencedirect.com/science/article/pii/S0007850608001054 CrossRefGoogle Scholar
  6. 6.
    Ambrogio G, Filice L, Manco GL (2010) Improving process performance in incremental sheet forming (ISF). In: AIP Conference Proceedings, vol 1315, pp 613–618Google Scholar
  7. 7.
    Ambrogio G, Gagliardi F (2014) Temperature variation during high speed incremental forming on different lightweight alloys. Int J Adv Manuf Technol 76(9-12):1819–1825.  https://doi.org/10.1007/s00170-014-6398-y CrossRefGoogle Scholar
  8. 8.
    Ambrogio G, Gagliardi F, Chamanfar A, Misiolek WZ, Filice L (2017) Induction heating and cryogenic cooling in single point incremental forming of Ti-6Al-4V: process setup and evolution of microstructure and mechanical properties. Int J Adv Manuf Technol 91(1-4):803–812.  https://doi.org/10.1007/s00170-016-9794-7 CrossRefGoogle Scholar
  9. 9.
    Ambrogio G, Sgambitterra E, De Napoli L, Gagliardi F, Fragomeni G, Piccininni A, Gugleilmi P, Palumbo G, Sorgente D, La Barbera L, Villa TM (2017) Performances analysis of titanium prostheses manufactured by superplastic forming and incremental forming. In: Procedia Engineering.  https://doi.org/10.1016/j.proeng.2017.04.057. http://www.sciencedirect.com/science/article/pii/S187770581731562X, vol 183. Elsevier, pp 168–173
  10. 10.
    Behera AK, Gu J, Lauwers B, Duflou J (2012) Influence of material properties on accuracy response surfaces in single point incremental forming. Key Eng Mater 504-506:919–924.  https://doi.org/10.4028/www.scientific.net/KEM.504-506.919 CrossRefGoogle Scholar
  11. 11.
    Behera AK, de Sousa RA, Ingarao G, Oleksik V (2017) Single point incremental forming: an assessment of the progress and technology trends from 2005 to 2015.  http://doi.org/10.1016/j.jmapro.2017.03.014. http://www.sciencedirect.com/science/article/pii/S1526612517300713
  12. 12.
    Buffa G, Campanella D, Fratini L (2013) On the improvement of material formability in SPIF operation through tool stirring action. Int J Adv Manuf Technol 66(9-12):1343–1351.  https://doi.org/10.1007/s00170-012-4412-9 CrossRefGoogle Scholar
  13. 13.
    Buffa G, Campanella D, Mirabile R, Fratini L (2013) Improving formability in SPIF processes through high speed rotating tool: experimental and numerical analysis. Key Eng Mater 549:156–163. http://www.scientific.net/KEM.549.156 CrossRefGoogle Scholar
  14. 14.
    Cawley B, Adams D, Jeswiet J (2013) Examining tool shapes in single point incremental forming. In: Proceedings of NAMRI/SME, vol 41. Mechanical EngineeringGoogle Scholar
  15. 15.
    Duflou J, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. CIRP Ann - Manuf Technol 56(1):273–276.  https://doi.org/10.1016/j.cirp.2007.05.063. http://www.sciencedirect.com/science/article/pii/S0007850607000686 CrossRefGoogle Scholar
  16. 16.
    Duflou J, Tunċkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189(1-3):65–72.  https://doi.org/10.1016/j.jmatprotec.2007.01.005. http://www.sciencedirect.com/science/article/pii/S0924013607000192 CrossRefGoogle Scholar
  17. 17.
    Duflou JR, Behera AK, Vanhove H, Bertol LS (2013) Manufacture of accurate titanium cranio-facial implants with high forming angle using single point incremental forming. Key Eng Mater 549:223–230.  https://doi.org/10.4028/www.scientific.net/KEM.549.223 CrossRefGoogle Scholar
  18. 18.
    Duflou JR, Lauwers B, Verbert J, Gelaude F, Tunckol Y (2005) Medical application of single point incremental forming: cranial plate manufacturing. In: Bartolo P (ed) Virtual modeling and rapid manufacturing : advanced research in virtual and rapid prototyping. https://www.crcpress.com/Virtual-Modelling-and-Rapid-Manufacturing-Advanced-Research-in-Virtual/da-Silva-Bartolo/p/book/9780415390620, vol 638. Taylor & Francis
  19. 19.
    Durante M, Formisano A, Langella A (2011) Observations on the influence of tool-sheet contact conditions on an incremental forming process. J Mater Eng Perform 20(6):941–946.  https://doi.org/10.1007/s11665-010-9742-x CrossRefGoogle Scholar
  20. 20.
    Durante M, Formisano a, Langella a, Capece Minutolo FM (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209(9):4621–4626.  https://doi.org/10.1016/j.jmatprotec.2008.11.028.CrossRefGoogle Scholar
  21. 21.
    Gupta P, Jeswiet J (2017) Observations on heat generated in single point incremental forming. In: Procedia Engineering.  https://doi.org/10.1016/j.proeng.2017.04.060. http://www.sciencedirect.com/science/article/pii/S1877705817315655, vol 183. Elsevier, pp 161–167
  22. 22.
    Ham M, Jeswiet J (2006) Single point incremental forming and the forming criteria for AA3003. CIRP Ann - Manuf Technol 55(1):241–244.  https://doi.org/10.1016/S0007-8506(07)60407-7. http://www.sciencedirect.com/science/article/pii/S0007850607604077 CrossRefGoogle Scholar
  23. 23.
    Ham M, Jeswiet J (2007) Forming limit curves in single point incremental forming. CIRP Ann - Manuf Technol 56(1):277–280.  https://doi.org/10.1016/j.cirp.2007.05.064. http://www.sciencedirect.com/science/article/pii/S0007850607000698 CrossRefGoogle Scholar
  24. 24.
    Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. In: Procedia Engineering.  https://doi.org/10.1016/j.proeng.2014.10.329. http://www.sciencedirect.com/science/article/pii/S1877705814016087, vol 81. Elsevier, pp 2330–2335
  25. 25.
  26. 26.
    Hussain G, Gao L, Hayat N, Dar NU (2010) The formability of annealed and pre-aged AA-2024 sheets in single-point incremental forming. Int J Adv Manuf Technol 46(5-8):543–549.  https://doi.org/10.1007/s00170-009-2120-x CrossRefGoogle Scholar
  27. 27.
    Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3(4):253–262.  https://doi.org/10.1007/s40436-015-0126-1 CrossRefGoogle Scholar
  28. 28.
    Jeswiet J, Hagan E (2001) Rapid prototyping of a headlight with sheet metal. In: Canadian Institute of Mining, Metallurgy and Petroleum, pp 109–114Google Scholar
  29. 29.
    Jeswiet J, Young D (2005) Forming limit diagrams for single-point incremental forming of aluminium sheet. Proc Inst Mech Eng, Part B: J Eng Manuf 219(4):359–364.  https://doi.org/10.1243/095440505X32210 CrossRefGoogle Scholar
  30. 30.
    Kennedy F (2001) Frictional heating and contact temperatures. In: Bhushan B (ed) Modern tribology handbook, 1 edn., chap. 6. CRC Press, Boca Raton, p 269Google Scholar
  31. 31.
    Khazaali H, Fereshteh-Saniee F (2016) A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti-6Al-4V titanium alloy using a simple technique. Int J Adv Manuf Technol 87(9-12):2911–2923.  https://doi.org/10.1007/s00170-016-8665-6 CrossRefGoogle Scholar
  32. 32.
    Lasunon OU (2013) Surface roughness in incremental sheet metal forming of AA5052. Adv Mater Res 753-755:203–206.  https://doi.org/10.4028/www.scientific.net/AMR.753-755.203 CrossRefGoogle Scholar
  33. 33.
    Li D, Ghosh A (2003) Tensile deformation behavior of aluminum alloys at warm forming temperatures. Mater Sci Eng: A 352(1-2): 279–286.  https://doi.org/10.1016/S0921-5093(02)00915-2. http://www.sciencedirect.com/science/article/pii/S0921509302009152 CrossRefGoogle Scholar
  34. 34.
    Li Z, Lu S, Chen P (2017) Improvement of dimensional accuracy based on multistage single point incremental forming of a straight wall cylinder part. Int J Precis Eng Manuf 18(9):1281–1286.  https://doi.org/10.1007/s12541-017-0151-z CrossRefGoogle Scholar
  35. 35.
    Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Technol 213(7):1221–1233.  https://doi.org/10.1016/j.jmatprotec.2013.01.023. http://www.sciencedirect.com/science/article/pii/S092401361300040X CrossRefGoogle Scholar
  36. 36.
    Marques TA, Silva M, Martins PAF (2012) On the potential of single point incremental forming of sheet polymer parts. Int J Adv Manuf Technol 60(1-4):75–86.  https://doi.org/10.1007/s00170-011-3585-y CrossRefGoogle Scholar
  37. 37.
    Martins P, Kwiatkowski L, Franzen V, Tekkaya A, Kleiner M (2009) Single point incremental forming of polymers. CIRP Ann - Manuf Technol 58(1):229–232.  https://doi.org/10.1016/j.cirp.2009.03.095 CrossRefGoogle Scholar
  38. 38.
    Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191(1-3):390–395.  https://doi.org/10.1016/j.jmatprotec.2007.03.066. http://www.sciencedirect.com/science/article/pii/S0924013607002919 CrossRefGoogle Scholar
  39. 39.
    Otsu M, Matsuo H, Matsuda M, Takashima K (2010) Friction stir incremental forming of aluminum alloy sheets. Steel Res Int 81(9):942–945Google Scholar
  40. 40.
    Otsu M, Yasunaga M, Matsuda M, Takashima K (2014) Friction stir incremental forming of A2017 aluminum sheets. Procedia Eng 81:2318–2323.  https://doi.org/10.1016/j.proeng.2014.10.327. http://www.sciencedirect.com/science/article/pii/S1877705814016063 CrossRefGoogle Scholar
  41. 41.
    Palumbo G, Brandizzi M (2012) Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Mater Des 40:43–51.  https://doi.org/10.1016/J.MATDES.2012.03.031. http://www.sciencedirect.com/science/article/pii/S0261306912002038 CrossRefGoogle Scholar
  42. 42.
    Pereira Bastos RN, Alves de Sousa RJ, Fernandes Ferreira JA (2016) Enhancing time efficiency on single point incremental forming processes. Int J Mater Form 9(5):653–662.  https://doi.org/10.1007/s12289-015-1251-x CrossRefGoogle Scholar
  43. 43.
    Singh RA (2013) Interface temperature of sliding surfaces. In: Tribology for Scientists and Engineers, chap. 5.  https://doi.org/10.1007/978-1-4614-1945-7_5. Springer, New York, pp 177–193
  44. 44.
    Skjoedt M, Silva M, Martins PaF, Bay N (2010) Strategies and limits in multi-stage single-point incremental forming. J Strain Anal Eng Des 45(1):33–44.  https://doi.org/10.1243/03093247JSA574 CrossRefGoogle Scholar
  45. 45.
    Soeiro J, Silva C, Silva M, Martins P (2015) Revisiting the formability limits by fracture in sheet metal forming. J Mater Process Technol 217:184–192.  https://doi.org/10.1016/j.jmatprotec.2014.11.009. http://www.sciencedirect.com/science/article/pii/S0924013614004026 CrossRefGoogle Scholar
  46. 46.
    Takata K (2013) Warm forming of aluminum alloys. Technical report, FuttsuGoogle Scholar
  47. 47.
    Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum–magnesium alloys. J Mater Process Technol 207(1):1–12.  https://doi.org/10.1016/j.jmatprotec.2008.03.057 CrossRefGoogle Scholar
  48. 48.
    Vanhove H, Carette Y, Vancleef S, Duflou J (2017) Production of thin shell clavicle implants through Single Point Incremental Forming. In: Procedia Engineering.  https://doi.org/10.1016/j.proeng.2017.04.058. http://www.sciencedirect.com/science/article/pii/S1877705817315631, vol 183. Elsevier, pp 174–179
  49. 49.
    Vanhove H, Mohammadi A, Guo YS, Duflou JR (2014) High-speed single point incremental forming of an automotive aluminium alloy. Key Eng Mater 622-623:433–439.  https://doi.org/10.4028/www.scientific.net/KEM.622-623.433 CrossRefGoogle Scholar
  50. 50.
    Wang J, Li L, Jiang H (2016) Effects of forming parameters on temperature in frictional stir incremental sheet forming. J Mech Sci Technol 30(5):2163–2169.  https://doi.org/10.1007/s12206-016-0423-z CrossRefGoogle Scholar
  51. 51.
    Xu D, Lu B, Cao T, Chen J, Long H, Cao J (2014) A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming. Procedia Eng 81:2324–2329.  https://doi.org/10.1016/j.proeng.2014.10.328 CrossRefGoogle Scholar
  52. 52.
    Xu D, Wu W, Malhotra R, Chen J, Lu B, Cao J (2013) Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. Int J Mach Tools Manuf 73:37–46.  https://doi.org/10.1016/j.ijmachtools.2013.06.007. http://www.sciencedirect.com/science/article/pii/S0890695513000977 CrossRefGoogle Scholar
  53. 53.
    Ziran X, Gao L, Hussain G, Cui Z (2009) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9-12):1113–1118.  https://doi.org/10.1007/s00170-009-2179-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations