Optimal variable screening in automobile motor-head machining process using metaheuristic approaches in the Mahalanobis-Taguchi System

  • Yadira I. Reyes-Carlos
  • Cecilia G. Mota-Gutiérrez
  • Edgar O. Reséndiz-Flores


The Mahalanobis-Taguchi System is a data analytical method for the diagnosis and/or pattern recognition with multivariate data and it is useful for quantitative decision making where the Mahalanobis distance plays a key role. Over time, MTS has received wide acceptance in the scientific community as well as in practical industry and it has been applied to different problems where variable screening of the original set of attributes is essential. In this paper, MTS is applied to an automobile motor-head machining process and the corresponding mathematical model for dimensional reduction is solved using metaherustic algorithms from swarm intelligence optimization.


Motor-head Binary particle swarm optimization Mahalanobis-Taguchi System Multivariate process Dimensional reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cudney E A, Jugulum R, Paryani K (2006) Applying the Mahalanobis-Taguchi system to vehicle handling. Concurr Engin Res Appl 14(4):343–354CrossRefGoogle Scholar
  2. 2.
    Das P, Datta S (2010) A statistical concept in determination of threshold value for future diagnosis in MTS: An alternative to Taguchi’s loss function approach 4(2):95–103Google Scholar
  3. 3.
    Deep K, Chauhan P, Pant M (2012) Multi task selection including part mix, tool allocation and process plans in CNC machining centers using new binary PSO. IEEE World Congress Comput Intell 10–15Google Scholar
  4. 4.
    Foster C R, Jugulum R, Frey DD (2009) Evaluating an adaptive One-Factor-At-a-Time search procedure within the Mahalanobis-Taguchi System. Int J Indus Syst Eng 4(6):600–614Google Scholar
  5. 5.
    Ghasemi E, Asghaie A, Cudney E (2015) Mahalanobis Taguchi system: a review 32(3):291–307Google Scholar
  6. 6.
    Iquebal A S, Pal A, Ceglarek D, Tiwari MK (2014) Enhancement of Mahalanobis–Taguchi system via rough sets based feature selection. Experts Syst Appl 41:8003–8015CrossRefGoogle Scholar
  7. 7.
    Jin X, Chow TWS (2013) Anomaly detection of cooling fan and fault classification of induction motor using Mahalanobis–Taguchi system 40(15):5787–5795Google Scholar
  8. 8.
    Kennedy J, Eberhart R C (1995) Particle swarm optimization. IEEE Int Conf Neural Netw 4:1942–1948Google Scholar
  9. 9.
    Kennedy J, Eberhart R C (1997) A discrete binary version of the particle swarm algorithm. IEEE Int Conf Syst Man Cybern 5:4104–4108Google Scholar
  10. 10.
    Nguyen B H, Xue B, Andreae P (2017) A novel binary particle swarm algorithm and its aplications on knapsack and feature selection problems. Intell Evolut Syst Proc Adaptn Learn Optim 8:319–332Google Scholar
  11. 11.
    Pal A, Maiti J (2010) Development of a hybrid methodology for dimensionality reduction in Mahalanobis-Taguchi system using Mahalanobis distance and binary particle swarm optimization. Expert Syst Appl 37(2):1286–1293CrossRefGoogle Scholar
  12. 12.
    Rai B, Chinnam R, Singh N (2008) Prediction of drill-bit breakage from degradation signals using Mahalanobis-Taguchi system analysis 3(2):134–148Google Scholar
  13. 13.
    Ramlie F, Jamaludin K, Dolah R (2016) Optimal feature selection of taguchi character recognition in the Mahalanobis-Taguchi system using bees algorithm 12(3):2651–2671Google Scholar
  14. 14.
    Reséndiz-Flores E O, López-Quintero ME (2017) Optimal identification of impact variables in a welding process for automobile seats mechanism by MTS-GBPSO approach. Int J Adv Manuf Technol 90(1):437–443CrossRefGoogle Scholar
  15. 15.
    Reséndiz-Flores E O, Moncayo-Martínez LA, Solís G (2012) Binary ant colony optimization applied to variable screening in the Mahalanobis-Taguchi system. Expert Syst Appl 40(2):634–637CrossRefGoogle Scholar
  16. 16.
    Reséndiz-Flores E O, Rull-Flores CA (2013) Mahalanobis-Taguchi system applied to variable selection in automotive pedals components using gompertz binary particle swarm optimization. Expert Syst Appl 40(7):2361–2365CrossRefGoogle Scholar
  17. 17.
    Saraiva P, Faísca N, Costa R, Gonçalves A (2004) Fault identification in chemical processes through a modified Mahalanobis–Taguchi strategy. Comput Aided Chem Eng 18:799–804CrossRefGoogle Scholar
  18. 18.
    Su C, Hsiao Y (2007) An evaluation of the robustness of MTS for imbalanced data 19(10):1321–1332Google Scholar
  19. 19.
    Su C, Li T (2002) Neural and MTS algorithms for feature selection 3(2):113–131Google Scholar
  20. 20.
    Taguchi G, Jugulum R (2000) New trends in multivariate diagnosis. Sankhyā Indian J Stat Series B 233–248Google Scholar
  21. 21.
    Wang H, Chiu C, Su C (2004) Data classification using the Mahalanobis-Taguchi system 21(6):606–618Google Scholar
  22. 22.
    Woodall W H, Koudelik R, Tsui K L, Kim S B, Stoumbus Z G, Carvounis C P (2003) A review and analysis of the Mahalanobis-Taguchi system. Amer Stat Assoc Amer Soc Qual Technometr 45(1):1–15MathSciNetGoogle Scholar
  23. 23.
    Xue B, Nguyen S, Zhang M (2014) A new binary particle swarm optimisation algorithm for feature selection. Eur Conf Appl Evol Comput 501–513Google Scholar
  24. 24.
    Yang T, Cheng Y (2010) The use of Mahalanobis-Taguchi system to improve flip-chip bumping height inspection efficiency 50(3):407–414Google Scholar
  25. 25.
    Yazid A M, Rijal J K, Awaluddin M, Sari E (2015) Pattern recognition on remanufacturing automotive component as support decision making using Mahalanobis-Taguchi system. Procedia CIRP 26:258–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  • Yadira I. Reyes-Carlos
    • 1
  • Cecilia G. Mota-Gutiérrez
    • 1
  • Edgar O. Reséndiz-Flores
    • 1
  1. 1.Division of Postgraduate Studies and Research, Department of Industrial EngineeringThe Technological Institute of SaltilloSaltilloMéxico

Personalised recommendations