Advertisement

Decoupling and effects of the mechanical vibration on the dynamic precision for the direct-driven machine tool

  • Xiaojun Yang
  • Dun Lu
  • Wanhua Zhao
ORIGINAL ARTICLE
  • 123 Downloads

Abstract

The linear motor feed system realizes direct drive, and all the intermediate transmission components are canceled. The thrust harmonics and other disturbances act on the mechanical system directly because the mover is connected with the driven parts, leading to obvious mechanical vibrations. The mechanical dynamic characteristics have important effects on the thrust characteristics and dynamic precision of linear motor feed system. In this paper, the decoupling and effects of the mechanical vibration on the dynamic precision for the direct driven are researched. Firstly, the mechanical kinetic model is established considering the characteristics of the joint between the guide rail and block and servo stiffness. Then the model realizes decoupling through the modal analysis, and the vibration responses in different directions are analytically calculated. What is more, a modeling method for the linear motor feed system considering the mechanical characteristic is put forward based on the modal separation method (MSM). The effects of the mechanical vibration on the dynamic precision of feed system are discussed. At last, the experiments are carried out and the influences of the structure parameters on the mechanical characteristics and displacement fluctuations are analyzed through sensitivity analysis, which provides a theoretical basis for the mechanical active design and improvement.

Keywords

Linear motor feed system Mechanical system Modal separation method Dynamic precision Sensitivity analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is financially supported by the key project of National Natural Science Funds (Grant No. 51235009).

References

  1. 1.
    Altintas Y, Verl A, Brecher C, Uriarte L, Pritschow G (2011) Machine tool feed drives. CIRP Ann Manuf Technol 60(2):779–796CrossRefGoogle Scholar
  2. 2.
    Altintas Y, Okwudire CE (2009) Dynamic stiffness enhancement of direct-driven machine tools using sliding mode control with disturbance recover. CIRP Ann Manuf Technol 58(1):335–338CrossRefGoogle Scholar
  3. 3.
    Villegas FJ, Hecker RL, Pena ME, Vicente DA, Flores GM (2014) Modeling of a linear motor feed drive including pre-rolling friction and aperiodic cogging and ripple. Int J Adv Manuf Technol 73(1):267–277.  https://doi.org/10.1007/s00170-014-5795-6 CrossRefGoogle Scholar
  4. 4.
    Zeng LZ, Chen XD, Li X, Jiang W, Luo X (2015) A thrust force analysis method for permanent magnet linear motor using schwarz–christoffel mapping and considering slotting effect, end effect, and magnet shape. IEEE Trans Magn 51(9):609–617CrossRefGoogle Scholar
  5. 5.
    Yang XJ, Lu D, Ma CF, Zhang J, Zhao WH (2017) Analysis on the multi-dimensional spectrum of the thrust force for the linear motor feed drive system in machine tools. Mech Syst Signal Process 82:68–79CrossRefGoogle Scholar
  6. 6.
    Tavana NR, Shoulaie A (2011) Pole-shape optimization of permanent-magnet linear synchronous motor for reduction of thrust ripple. Energy Convers Manag 52(1):349–354.  https://doi.org/10.1016/j.enconman.2010.07.007 CrossRefGoogle Scholar
  7. 7.
    Markovic M, Jufer M, Perriard Y (2004) Reducing the cogging torque in brushless DC motors by using conformal mappings. IEEE Trans Magn 40(2):451–455.  https://doi.org/10.1109/TMAG.2004.824111 CrossRefGoogle Scholar
  8. 8.
    Zhu YW, Lee SG, Chung KS, Cho YH (2009) Investigation of auxiliary poles design criteria on reduction of end effect of detent force for PMLSM. IEEE Trans Magn 45(6):2863–2866.  https://doi.org/10.1109/TMAG.2009.2018778 CrossRefGoogle Scholar
  9. 9.
    Kazan E, Onat A (2011) Modeling of air core permanent-magnet linear motors with a simplified nonlinear magnetic analysis. IEEE Trans Magn 47(6):1753–1762.  https://doi.org/10.1109/TMAG.2011.2111375 CrossRefGoogle Scholar
  10. 10.
    Song YX, Wang JF, Yang KM, Yin WS, Zhu Y (2010) A dual-stage control system for high-speed, ultra-precise linear motion. Int J Adv Manuf Technol 48(5):633–643.  https://doi.org/10.1007/s00170-009-2327-x CrossRefGoogle Scholar
  11. 11.
    Cho K, Kim J, Choi SB, Oh S (2015) A high-precision motion control based on a periodic adaptive disturbance observer in a PMLSM. IEEE/ASME Trans Mechatron 20(5):2158–2171.  https://doi.org/10.1109/TMECH.2014.2365996 CrossRefGoogle Scholar
  12. 12.
    Zhou YF, Song B, Chen XD (2006) Position/force control with a lead compensator for PMLSM drive system. Int J Adv Manuf Technol 30(11):1084–1092Google Scholar
  13. 13.
    Lee JH, Lee SK (2004) Chucking compliance compensation with a linear motor-driven tool system. Int J Adv Manuf Technol 23(1):102–109.  https://doi.org/10.1007/s00170-003-1696-9 CrossRefGoogle Scholar
  14. 14.
    Itagaki H, Tsutsumi M (2014) Control system design of a linear motor feed drive system using virtual friction. Precis Eng 38(2):237–248.  https://doi.org/10.1016/j.precisioneng.2013.09.002 CrossRefGoogle Scholar
  15. 15.
    Bascetta L, Rocco P, Magnani G (2010) Force ripple compensation in linear motors based on closed-loop position-dependent identification. IEEE/ASME Trans Mechatron 15(3):349–359.  https://doi.org/10.1109/TMECH.2009.2026045 CrossRefGoogle Scholar
  16. 16.
    Yan MT, Huang KY, Shiu YJ, Chen Y (2007) Disturbance observer and adaptive controller design for a linear motor driven table system. Int J Adv Manuf Technol 35(3):408–415.  https://doi.org/10.1007/s00170-007-1173-y CrossRefGoogle Scholar
  17. 17.
    Chen SL, Tan KK, Huang SN (2010) Modeling and compensation of rippled and friction in permanent-magnet linear motor using a hysteretic relay. IEEE/ASME Trans Mechatron 15(4):586–594.  https://doi.org/10.1109/TMECH.2009.2030794 CrossRefGoogle Scholar
  18. 18.
    Huang WL, Kuo FC, Chou SC, Yen JY, Tsai IH, Chung TT, Hung CW (2017) High performance and high precision servo control of a single deck dual axis PMLSM stage. Int J Adv Manuf Technol 90(1):865–874.  https://doi.org/10.1007/s00170-016-9355-0 CrossRefGoogle Scholar
  19. 19.
    Renton D, Elbestawi MA (2001) Motion control for linear motor feed drives in advanced machine tools. Int J Mach Tool Manu 41(4):479–507.  https://doi.org/10.1016/S0890-6955(00)00089-4 CrossRefGoogle Scholar
  20. 20.
    Zhang DL, Chen YP, Ai W, Zhou ZD (2007) Precision motion control of permanent magnet linear motors. Int J Adv Manuf Technol 35(3):301–308.  https://doi.org/10.1007/s00170-006-0727-8 CrossRefGoogle Scholar
  21. 21.
    Yang XJ, Lu D, Zhang J, Zhao WH (2015) Dynamic electromechanical coupling resulting from the air-gap fluctuation of the linear motor in machine tools. Int J Mach Tool Manuf 94:100–108.  https://doi.org/10.1016/j.ijmachtools.2015.04.004 CrossRefGoogle Scholar
  22. 22.
    Yang XJ, Lu D, Zhang J, Zhao WH (2015) Investigation on the displacement fluctuation of the linear motor feed system considering the linear encoder vibration. Int J MachTool Manuf 98:33–40.  https://doi.org/10.1016/j.ijmachtools.2015.09.005 CrossRefGoogle Scholar
  23. 23.
    THK (Producer) (2013) Linear motion systems: general catalog. THK CO,.LTD, No.504CGoogle Scholar
  24. 24.
    Greenwood JA (1997) Analysis of elliptical Hertzian contacts. Tribol Int 30(3):235–237.  https://doi.org/10.1016/S0301-679X(96)00051-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Xi’an Jiaotong UniversitySchool of Mechanical EngineeringXi’anPeople’s Republic of China
  2. 2.Xi’an Jiaotong UniversityState Key Laboratory for Manufacturing Systems EngineeringXi’anPeople’s Republic of China
  3. 3.Xi’an Jiaotong UniversityCollaborative Innovation Center of High-end Manufacturing EquipmentXi’anPeople’s Republic of China

Personalised recommendations