High-accuracy interference-fit assembly utilizing a hybrid actuator

  • A. Liuti
  • F. Rodriguez Vedugo
  • N. Paone
  • C. Ungaro
ORIGINAL ARTICLE

Abstract

This paper presents an innovative press-fitting station that combines a hydraulic cylinder and a piezoelectric actuator to reach micrometric accuracy in axial positioning. The hydraulic cylinder permits a long operation range, while the piezoactuator provides dynamic action and micrometric accuracy. The experimental characterisation of the prototype press is presented together with the physical phenomena influencing the system performance. The tests are done using cylindrical plugs and sleeves to replicate the insertion of shafts into holes. The test samples are designed and machined to obtain a known interference fit. The classic press-fit assembly process can barely reach micrometric accuracy because the deformation on the contact surface cannot easily be measured. The presented press-fit station can overcome these limits thanks to the developed control strategy: When the piezoactuator is driven by an amplitude-modulated sinusoidal signal, it can realize assemblies with a maximum error in the final positioning of ± 2 μm for an insertion force of up to 20 kN.

Keywords

Automatic assembly Piezoelectric element Hydraulic cylinder Precision positioning Hybrid actuator Micropositioning system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pedersen NL (2016) Principles and design of mechanical face seals. Struct Multidiscip Optim 54:349–359. https://doi.org/10.1007/s00158-016-1419-0 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bloch HP (1998) Improving machinery reliability, Gulf professional publishingGoogle Scholar
  3. 3.
    Liuti A, Rodriguez Verdugo F, Paone N, Ungaro C (2016) Monitoring techniques for high accuracy interference fit assembly processes. Proceedings of 12th International AIVELA Conference on Vibration Measurements by Laser and Noncontact Techniques 1740:1–12. https://doi.org/10.1063/1.4952677
  4. 4.
    Mears ML, Falcon J, Kurfess TR (2006) Real-time identification of sliding friction using LabVeiew FPGA. Proceedings of the American Control Conference 1-12:1410. https://doi.org/10.1109/ACC.2006.1656415
  5. 5.
    Lynch KM (1993) Estimating the friction parameters of pushed objects. Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robot and Systems 1–3:186–193Google Scholar
  6. 6.
    Straffellini G (2000) Attrito e usura dei materiali. ASSIMGoogle Scholar
  7. 7.
    Nogueira I, Dias AM, Gras R, Progri R (2002) An experimental model for mixed friction during running-in. Wear 253:541–549. https://doi.org/10.1016/S0043-1648(02)00065-0 CrossRefGoogle Scholar
  8. 8.
    Al-Bender F (2010) Fundamentals of friction modeling. Proceedings ASPE Spring Topical Meeting on Control of Precision Systems 48:117–122Google Scholar
  9. 9.
    Luo Y, Wang X, Wang M (2013) A force/stiffness compensation method for precision multi-peg-hole assembly. Int J Adv Manuf Technol 67:951. https://doi.org/10.1007/s00170-012-4539-8 CrossRefGoogle Scholar
  10. 10.
    Liu YT, Higuchib T, Funga RF (2003) A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator—part I: experimental design and results. Precis Eng 27:14–21. https://doi.org/10.1016/S0141-6359(02)00180-0 CrossRefGoogle Scholar
  11. 11.
    Yamagata Y, Higuchi T (1995) A micropositioning device for precision automatic assembly using impact force of piezoelectric elements. Proceedings of IEEE International Conference on Robotics and Automation, 1:666–671. https://doi.org/10.1109/ROBOT.1995.525360
  12. 12.
    Liu YT, Yamagata Y, Higuchi T (2005) Micropositioning device using impact force of piezoelectric flying wires. IEEE/ASME Trans Mechatronics 10:692–696. https://doi.org/10.1109/TMECH.2005.859840 CrossRefGoogle Scholar
  13. 13.
    Lindler JE, Anderson EH, Regelbrugge ME (2003) Design and testing of piezoelectric-hydraulic actuators. Proceedings of SPIE Smart Structure and Material Symposium: Industrial and Commercial Applications of Smart Structures Technology 5054:96–107. https://doi.org/10.1117/12.483888
  14. 14.
    Liu YT, Higuchi T (2001) Precision positioning device utilizing impact force of combined piezo-pneumatic actuator. IEEE/ASME Trans Mechatronics 6:467–473. https://doi.org/10.1109/3516.974860 CrossRefGoogle Scholar
  15. 15.
    Liu YT, Wang CC (2009) One-DOF precision position control using the combined piezo-VCM actuator. Int Sci Index, Biom and Biol Eng 3:8Google Scholar
  16. 16.
    Bhushan B (2010) Springer handbook of nano-technology. Springer-Verlag, Berlin, pp 896–898CrossRefGoogle Scholar
  17. 17.
    Swevers J, Al-Bender F, Ganseman C, Prajogo T (2000) An integrated friction model structure with improved presliding behaviour for accurate friction compensation. IEEE Trans Autom Control 45:675–686. https://doi.org/10.1109/9.847103 CrossRefMATHGoogle Scholar
  18. 18.
    Lampaert V, Al-Bender F, Swevers J (2004) Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribol Lett 16:95–106CrossRefGoogle Scholar
  19. 19.
    Al-Bender F, Symens W, Swevers J, Van Brussel H (2004) Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. Int J Non-Linear Mech 39:1721–1735. https://doi.org/10.1016/j.ijnonlinmec.2004.04.005 CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • A. Liuti
    • 1
    • 2
  • F. Rodriguez Vedugo
    • 2
  • N. Paone
    • 1
  • C. Ungaro
    • 2
  1. 1.Department of Industrial Engineering and Mathematical SciencesUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Loccioni GroupAnconaItaly

Personalised recommendations