Skip to main content
Log in

DFM method for aircraft structural parts using the AHP method

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

During the part design process, the main objective is usually the maximum performance in use. For aircraft structural parts, the best ratio between mechanical resistance and weight is sought. However, these objectives can lead to geometries which are complex to manufacture. The DFM method presented here is based on concepts from morphological studies and analytic hierarchy process (AHP) to optimize the geometry of an I-Beam considering its manufacturing process and use. To do this, all the I-Beam alternatives that fit into the mechanical environment of the part are listed. Performance indicators are then defined to evaluate the weight, mechanical resistance, and manufacturability of each I-Beam. Then, performance indicators are compared and their relative priority measured on a ratio scale. Finally, the various I-Beam alternatives are compared using a macro-indicator composed of all the performance indicators in order to find the best geometry for the part considering its industrial and economic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lutters E, Van Houten F, Bernard A, Mermoz E, Schutte C (2014) Tools and techniques for product design. CIRP Ann Manuf Technol 63:607–630. https://doi.org/10.1016/j.cirp.2014.05.010.

    Article  Google Scholar 

  2. Mulani SB, Locatelli D, Kapania RK (2010) algorithm development for optimization of arbitrary geometry panels using curvilinear stiffeners. In 51st AIAA / ASME / ASCE / AHS / ASC structures, Structural Dynamics and Materials Conference doi:https://doi.org/10.2514/6.2010-2674.

  3. Wang W, Guo S, Chang N, Yang W (2010) Optimum buckling design of composite stiffened panels using ant colony algorithm. Compos Struct 92:712–719. https://doi.org/10.1016/j.compstruct.2009.09.018

    Article  Google Scholar 

  4. Herencia J, Enrique P, Weaver M, Friswell M (2008) Initial sizing optimisation of anisotropic composite panels with T-shaped stiffeners. Thin-Walled Struct 46:399–412. https://doi.org/10.1016/j.tws.2007.09.003

    Article  Google Scholar 

  5. Mistry M, Gandhi F, Chandra R (2008) Twist control of an I-beam through Vlasov bimoment actuation. In 49th AIAA / ASME / ASCE / AHS / ASC Structures, Structural Dynamics and Materials Conference. doi: https://doi.org/10.2514/6.2008-2278.

  6. Oda Y, Mori M, Ogawa K, Nishida S, Fujishima M, Kawamura T (2012) Study of optimal cutting condition for energy efficiency improvement in ball end milling with tool-workpiece inclination. CIRP Ann Manuf Technol 61:119–122. https://doi.org/10.1016/j.cirp.2012.03.034.

    Article  Google Scholar 

  7. Wang N, Tang K (2007) Automatic generation of gouge-free and angular-velocity-compliant five-axis toolpath. CAD. Computer Aided Design 39:841–852. https://doi.org/10.1016/j.cad.2007.04.003.

    Article  Google Scholar 

  8. Tang TD, Bohez E, Koomsap P (2007) The sweep plane algorithm for global collision detection with workpiece geometry update for five-axis NC machining. CAD. Computer Aided Design 39:1012–1024. https://doi.org/10.1016/j.cad.2007.06.004.

    Article  Google Scholar 

  9. Tang TD (2014) Algorithms for collision detection and avoidance for five-axis NC machining: a state of the art review. Comput Aided Des 51:1–17. https://doi.org/10.1016/j.cad.2014.02.001.

    Article  Google Scholar 

  10. Derigent W (2005) Méthodologie de passage d’un modèle CAO vers un modèle FAO pour des pièces aéronautiques : prototype logiciel dans le cadre du projet USIQUICK. PhD dissertation, Université Henri Poincaré, Nancy-I

  11. Coelho RT, de Souza AF, Roger AR, Rigatti AMY, de Lima Ribeiro AA (2010) Mechanistic approach to predict real machining time for milling free-form geometries applying high feed rate. Int J Adv Manuf Technol 46:1103–1111. https://doi.org/10.1007/s00170-009-2183-8

    Article  Google Scholar 

  12. Curran R, Gomis G, Castagne S, Butterfield J, Edgar T, Higgins C, McKeever C (2007) Integrated digital design for manufacture for reduced life cycle cost. Int J Prod Econ 109:27–40. https://doi.org/10.1016/j.ijpe.2006.11.010

    Article  Google Scholar 

  13. Yin H, Yu X (2010) Integration of manufacturing cost into structural optimization of composite wings. Chin J Aeronaut 23:670–676. https://doi.org/10.1016/S1000-9361(09)60269-7

    Article  Google Scholar 

  14. Andersson F, Hagqvist A, Sundin E, Björkman M (2014) Design for manufacturing of composite structures for commercial aircraft-the development of a DFM strategy at SAAB Aerostructures. Procedia CIRP 17:362–367. https://doi.org/10.1016/j.procir.2014.02.053

    Article  Google Scholar 

  15. Kerbrat O, Mognol P, Hascoët JY (2011) A new DFM approach to combine machining and additive manufacturing. Comput Ind 62:684–692. https://doi.org/10.1016/j.compind.2011.04.003

    Article  Google Scholar 

  16. Ong SK, Sun MJ, Nee AYC (2003) A fuzzy set AHP-based DFM tool for rotational parts. J Mater Process Technol 138:223–230. https://doi.org/10.1016/S0924-0136(03)00076-1

    Article  Google Scholar 

  17. Mardani A, Jusoh A, Zavadskas EK (2015) Fuzzy multiple criteria decision-making techniques and applications – two decades review from 1994 to 2014. Expert Syst Appl 42:4126–4148. https://doi.org/10.1016/j.eswa.2015.01.003

    Article  Google Scholar 

  18. Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169:1–29. https://doi.org/10.1016/j.ejor.2004.04.028.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ohayon K, Ounnar F, Pujo P, Canal D (2011) Amélioration de l’ordonnancement d’une ligne de production par la méthode AHP. In 9e Congrès International de Génie Industriel CIGI.

  20. Badea A, Prostean G, Goncalves G, Allaoui H (2014) Assessing risk factors in collaborative supply chain with the analytic hierarchy process (AHP). Procedia - Social Behavioral Sci 124:114–123. https://doi.org/10.1016/j.sbspro.2014.02.467

    Article  Google Scholar 

  21. Singh SP, Singh VK (2011) Three-level AHP-based heuristic approach for a multi-objective facility layout problem. Int J Prod Res 49:1105–1125. https://doi.org/10.1080/00207540903536148

    Article  Google Scholar 

  22. Altuzarra A, Moreno-Jiménez JM, Salvador M (2007) A bayesian priorization procedure for AHP-group decision making. Eur J Oper Res 182:367–382. https://doi.org/10.1016/j.ejor.2006.07.025

    Article  MATH  Google Scholar 

  23. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26. https://doi.org/10.1016/0377-2217(90)90057-I

    Article  MATH  Google Scholar 

  24. Gogu G (2005) Evolutionary morphology. In: Bramley A, Brissaud D, Coutellier D, McMahon C (eds) Advances in integrated design and manufacturing in mechanical engineering. Springer, Dordrecht, pp 389–402. https://doi.org/10.1007/1-4020-3482-2_31

    Chapter  Google Scholar 

  25. Desai S, Bidanda B, Lovell MR (2012) Material and process selection in product design using decision-making technique (AHP). European J Industrial Engineering 6:322–346. https://doi.org/10.1504/Ejie.2012.046666

    Article  Google Scholar 

  26. Ounnar F, Khader S, Dubromelle Y, Prunaret JP, Pujo P (2013) Évaluation d’une méthode d’ordonnancement multicritère utilisant AHP. In 10° Congrès International de Génie Industriel CIGI.

  27. Svoboda A, Tatar K, Norman P, Backstrom M (2006) Integrated approach for prediction of stability limits for machining with large volumes of material removal. Int J Prod Res 46:3207–3222. https://doi.org/10.1080/00207540601100924.

    Article  MATH  Google Scholar 

  28. Saaty RW (1987) The analytic hierarchy process - what it is and how it is used. Mathematical Modelling 9:161–176. https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  29. Triantaphyllou E, Mann SH (1995) Using the analytic hierarchy process for decision making in engineering applications : some challenges. International journal of industrial engineering: theory, applications and. Practice 2:35–44

    Google Scholar 

  30. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  31. Aguaron J, Moreno-Jiménez JM (2003) The geometric consistency index: approximated thresholds. Eur J Oper Res 147:137–145. https://doi.org/10.1016/S0377-2217(02)00255-2

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are greatly appreciative to Mr. Alexandre Borsut and Mr. Quentin Lagarde, SIGMA Clermont, for their assistance in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Fortunet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortunet, C., Durieux, S., Chanal, H. et al. DFM method for aircraft structural parts using the AHP method. Int J Adv Manuf Technol 95, 397–408 (2018). https://doi.org/10.1007/s00170-017-1213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1213-1

Keywords

Navigation