Skip to main content
Log in

Fatigue life prediction under variable loading based on a new damage model devoted for defective material

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

This article presents a fatigue damage cumulative model under variable loading devoted for defective materials. The multiaxial stress amplitude is reported to the equivalent stress by combining it with the S–N curve and an algorithm to evaluate the damage model. The proposed model is connected cycle by cycle with the Wöhler curve and it takes into account the history of loading. An application has been carried out on a C35 low alloy steel containing defects. The results of the model are compared with the experimental results made on this context and those computed by the most frequently used damage model in fatigue (Miner’s model). It has been demonstrated that the proposed model presents a good prediction of the experimental results, allows a better fatigue damage prediction than the widely used Miner rule, and can be used as an interesting and a powerful engineering prediction for industrial users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crossland B (1956) Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. The international conference on fatigue of metals. Institution of mechanical engineers, London, pp 138–149

  2. Findley WN (1959) A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending. ASME J Eng Ind 301–306

  3. Dang Van K (1973) Sur la résistance à la fatigue des métaux. Sciences et Technique de l'Armement 47(3):647–722

    Google Scholar 

  4. Robert JL (1992) Contribution à l'étude de la fatigue multiaxiale sous sollicitations périodiques ou aléatoires. Thèse de l'Institut National des Sciences Appliquées de Lyon

  5. Papadopoulos IV (1994) A new criterion of fatigue strength for out-of-phase bending and torsion of hard metals. Int J Fatigue 16(6):377–384

    Article  Google Scholar 

  6. Papuga J, Růžička M (2008) Two new multiaxial criteria for high cycle fatigue computation. Int J Fatigue 30(1):58–66

    Article  MATH  Google Scholar 

  7. Ben Sghaier R, Majed N, Ben Dali H, Fathallah R High cycle fatigue prediction of glass fiber-reinforced epoxy composites: reliability study. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0496-6

  8. Nadot Y (1997) Influence des défauts de fonderie sur la résistance à la fatigue d’une fonte GS, These, ENSMA, Poitiers

  9. De Kazinczy F (1970) Effect of small defects on the fatigue properties of medium strength cast steel. J Iron Steel Inst 208:851–855

    Google Scholar 

  10. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elseiver, Amsterdam

    Google Scholar 

  11. Quoc Huy VU (2009) Fatigue polycyclique multiaxiale de l’acier C35 : Caractérisation et modélisation des mécanismes d’endommagement. Thèse de doctorat ENSIATA 2009

  12. Ben Ahmed A, Nasr A, Bahloul A, Fathallah R The impact of defect morphology, defect size, and SDAS on the HCF response of A356-T6 alloy. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0192-6

  13. Wannes H, Nasr A, Bouraoui C (2016) New fatigue limit assessment approach of defective material under fully reserved tension and torsion loading. Mech Ind 113:310. https://doi.org/10.1051/meca/2015064

    Article  Google Scholar 

  14. Ben Ahmed A, Nasr A, Fathallah R Probabilistic high cycle fatigue behavior prediction of A356-T6 alloy considering the SDAS dispersion. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9628-7

  15. Seddik R et al (2017) Fatigue reliability prediction of metallic shot peened-parts based on Wöhler curve. J Constr Steel Res 130:222–233

    Article  Google Scholar 

  16. Bahloul A, Ben Ahmed A, Mhala MM, Bouraoui CH Probabilistic approach for predicting fatigue life improvement of cracked structure repaired by high interference fit bushing. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-016-9957-6

  17. Li A, Tommy ZX, Chan HT, Ko JM (2001) Fatigue analysis and life prediction of bridges with structural health monitoring data—part I: methodology and strategy. Int J Fatigue 23(1):45–53

    Article  Google Scholar 

  18. El-Hadek C, Awad M (2014) Fatigue characterization of fluorogold and fluorogreen polymers. Metall Mater Trans A 45(1):317–323

    Article  Google Scholar 

  19. Liu Y, Wu Y, Wang J, Liu S Defect analysis and design optimization on the hot forging of automotive balance shaft based on 3D and 2D simulations. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-1080-9

  20. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 159:159–164

    Google Scholar 

  21. Lemaitre J, Chaboche JL (1988) Mécanique des matériaux solides. Dunod, Paris

    Google Scholar 

  22. Chaboche JL (1981) Continuum damage mechanics—a tool to describe phenomena before crack initiation. Nucl Eng Des 64:233–247

    Article  Google Scholar 

  23. Mesmacque G, Garcia S, Amrouche A, Rubio-Gonzalez C (2005) Sequential law in multiaxial fatigue, a new damage indicator. Int J Fatigue 27:461–467

    Article  Google Scholar 

  24. Aid A (2006) Cumul d’endommagement en fatigue multiaxiale sous sollicitations aléatoires. Thèse de doctorat. Université Djillali Liabès Sidi Bel-Abbès

  25. Aïd A, Amrouche A, Bachir Bouiadjra B, Benguediab M, Mesmacque G (2011) Fatigue life prediction under variable loading based on a new damage model. Mater Des 32(1):183–191

    Article  Google Scholar 

  26. Billaudeau T (2002) Fatigue multiaxiale des matériaux à défauts : mécanisme et critère d’endurance, thèse doctorale. ENSMA, Poitiers

    Google Scholar 

  27. Gadouini H (2007) Modélisation des fatigues des matériaux contenant des défauts, thèse doctorale. ENSMA, Poitiers

    Google Scholar 

  28. ABAQUS Standard User’s Manuel, Version 6.10, 2005

  29. Weibull W (1961) Fatigue testing analysis of results. Pergamon, Oxford

    Google Scholar 

  30. Huyen N, Morel F (2007) Colloque national MECAMAT, 5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maroua Saggar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saggar, ., Sallem, H. & Bouraoui, C. Fatigue life prediction under variable loading based on a new damage model devoted for defective material. Int J Adv Manuf Technol 95, 431–443 (2018). https://doi.org/10.1007/s00170-017-1198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1198-9

Keywords

Navigation