Material removal mechanisms in grinding of two-phase brittle materials

  • Sebastian MuellerEmail author
  • Christian Wirtz
  • Daniel Trauth
  • Patrick Mattfeld
  • Fritz Klocke


The material removal mechanisms of one-phase brittle materials during grinding are largely understood. In contrast, the material removal mechanisms of two-phase brittle materials are just known rudimentary hindering the prediction of the workpiece surface characteristics resulting from a grinding process. Hence, in this work, the material removal mechanisms of two-phase brittle materials are analyzed by means of single grain cutting tests using the examples of cemented carbides and ceramic matrix composites. In a first step, the structure and properties of the materials investigated within the frame of this work are described. Then, surface phenomena evolving in single grain cutting tests are identified and characterized for both materials. Finally, models describing and explaining the underlying material removal mechanisms are presented considering the different structure of cemented carbides and ceramic matrix composites.


Grinding Material removal mechanisms Cemented carbides Ceramic matrix composites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank CERATIZIT S. A. for their support.


The authors would like to thank the German Research Foundation (DFG) for funding this research work (grant numbers: KL 500/120-1 and KL 500/183-1).


  1. 1.
    Denkena B, Friemuth T, Spenger C (2003) Modeling and process design for different grinding operations of carbide tools. Prod Eng Res Devel 10(1):15–18Google Scholar
  2. 2.
    Denkena B, Köhler J, Schindler, A (2014) Behavior of the magnetic abrasive tool for cutting edge preparation of cemented carbide end mills. Prod. Eng. Res. Devel, Vol 8 pp. 627–633Google Scholar
  3. 3.
    Klocke F (2009) Manufacturing processes 2: grinding, honing lapping. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Marshall DB, Evans AG (1983) The nature of machining damage in brittle materials. Proc R Soc Lond:461–475Google Scholar
  5. 5.
    Dai J, Ding W, Zhang L, Xu J, Su H (2015) Understanding the effects of grinding speed and undeformed chip thickness on the chip formation in high-speed grinding. Int J Manuf Technol 81(5–8):995–1005CrossRefGoogle Scholar
  6. 6.
    König W, Steffens K, Ludewig T (1985) Single grit tests to reveal the fundamental mechanism in grinding. Proc. Grind. Conf. ASME, pp.141–154Google Scholar
  7. 7.
    Nakajima T, Uno Y, Fujiwara T (1989) Cutting mechanism of fine ceramics with a single point diamond. Precis Eng 11(1):19–25CrossRefGoogle Scholar
  8. 8.
    Warnecke G, Rosenberger U, Milberg J (1995) Basics of process parameter selection in grinding of advanced ceramics. CIRP Annals – Manufacturing Technology, Vol. 44, Issue 4, pp. 283–286Google Scholar
  9. 9.
    Schinker M, Döll W (1984) Untersuchungen der Abtragsvorgänge und -mechanismen bei der Bearbeitung optischer Gläser mit Diamant. Industrie-Diamanten-Rundschau 18(4):234–242Google Scholar
  10. 10.
    Klocke F, Linke B, Schluetter D (2010) Development of a reliable grinding procedure for ceramic medical instruments. Prod. Eng. Res. Devel. 4(6):571–579CrossRefGoogle Scholar
  11. 11.
    Xi X, Ding W, Li Z, Xu J (2017) High speed grinding of particulate reinforced titanium matrix composites using a monolayer brazed cubic boron nitride wheel. Int J Manuf Technol 90(5–8):1529–1538CrossRefGoogle Scholar
  12. 12.
    Schmücker M, Mechnich P (2008) All-oxide ceramic matrix composites with porous matrices. Ceramic matrix composites—fiber reinforced ceramics and their applications. Wiley-VCH, Weinheim, pp 205–229Google Scholar
  13. 13.
    Schmidt S, Beyer S, Knabe H, Immich H, Meistring GA (2004) Advanced ceramic matrix composite materials for current and future pro-pulsion technology applications. Acta Astronautica 55(3–9):409–420CrossRefGoogle Scholar
  14. 14.
    Jia K, Fischer TE, Gallois B (1998) Microstructure, Hardness and Toughness of Nanostructured and Conventional WC-Co Composites. Nanostruct Mater 10:875–891CrossRefGoogle Scholar
  15. 15.
    8785 DINENISO (1999) Surface imperfections—terms, definitions and parameters. DIN Deutsches Institut für Normierung e:VGoogle Scholar
  16. 16.
    Bansal N (2005) Handbook of ceramic composites, Springer USGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Sebastian Mueller
    • 1
    Email author
  • Christian Wirtz
    • 1
  • Daniel Trauth
    • 1
  • Patrick Mattfeld
    • 1
  • Fritz Klocke
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen UniversityAachenGermany

Personalised recommendations