Skip to main content
Log in

Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Power-skiving is an efficient method for the manufacturing of high accuracy gears, particularly internal gears. However, dedicated power-skiving machine tools are normally very expensive. Accordingly, the present study proposes a simple methodology for automatically and systematically generating the NC code required to manufacture gears using the power-skiving method on a conventional six-axis CNC turn-mill machining center. The main factors determining the linear cutting speed of the power-skiving tool are analyzed and a modified D-H notation is used to evaluate the error characteristics of the machine tool system. The validity of the proposed methodology is demonstrated by machining an internal gear on a DMG MORI NTX1000 six-axis CNC turn-mill machining center. The results confirm that the proposed approach provides a simple yet effective method for implementing the power-skiving technique on a conventional six-axis CNC turn-mill machining center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pittler von W (1910) Verfahren zum Schneiden von Zahnrädern mittels eines zahnrad-artigen, an den Stirnflächen der Zähne mit Schneidkanten versehen-en Schneidwerkzeuges, Patent application, Germany

  2. Spath D, Huhsam A (2002) Skiving for high-performance machining of periodic structures. CIRP Ann Manuf Technol 51:91–94

    Article  Google Scholar 

  3. Bouzakis KD, Lili E, Michailidis N, Friderikos O (2008) Manufacturing of cylindrical gears by generating cutting processes: a critical synthesis of analysis methods. CIRP Ann Manuf Technol 57:676–696

    Article  Google Scholar 

  4. Chen XC, Li J, Lou BC (2013) A study on the design of error-free spur slice cutter. Int J Adv Manuf Technol 68:727–738

    Article  Google Scholar 

  5. Cchen XC, Li J, Lou BC, Shi J, Yang Q (2013) Effect of the cutter parameters and machining parameters on the interference in gear slicing. Chin J Mech Eng 26:1118–1126

    Article  Google Scholar 

  6. Guo E, Hong R, Huang X, Fang C (2014) Research on the design of skiving tool for machining involute gears. J Mech Sci Technol 28:5107–5115

    Article  Google Scholar 

  7. Stadtfeld H (2014) Power-skiving of cylindrical gears on different machine platforms. Gear Technol 31:52–62

    Google Scholar 

  8. Kiridena VSB, Ferreira PM (1993) Mapping of the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools. Int J Mach Tool Manu 33:417–437

    Article  Google Scholar 

  9. Paul RP (1982) Robot manipulators-mathematics, programming and control. MIT Press

  10. Lin PD, Chu MB (1994) Machine tool settings for manufacturing of cams with flat-face followers. Int J Mach Tools Manuf 34:1119–1131

    Article  Google Scholar 

  11. Mahbubur RM, Heikkala J, Lappalainen K, Karjalainen JA (1997) Positioning accuracy improvement in five-axis milling by postprocessing. Int J Mach Tool Manu 37:223–236

    Article  Google Scholar 

  12. Lin PD (1989) Error analysis, measurement and compensation for multiaxis machines, Ph.D. Thesis, Mechanical Engineering Department, Northwestern University

  13. Wang SM, Ehmann KF (1999) Measurement method for position error of a multi-axis machine-part I: principle and sensitivity analysis. Int J Mach Tool Manu 39:951–964

    Article  Google Scholar 

  14. Wang SM, Ehmann KF (1999) Measurement method for position error of a multi-axis machine-part II: applications and experimental results. Int J Mach Tool Manu 39:1485–1505

    Article  Google Scholar 

  15. Wang SM, Liu YL, Kang Y (2002) An efficient error compensation system for CNC multi-axis machines. Int J Mach Tool Manu 42:1235–1245

    Article  Google Scholar 

  16. Jiang X, Cripps RJ (2015) A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar. Int J Mach Tool Manu 89:151–158

    Article  Google Scholar 

  17. Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms based on matrices. ASME J Appl Mech 77:215–221

    MathSciNet  MATH  Google Scholar 

  18. Lin PD, Tzeng CS (2008) Modeling and measurement of active parameters and workpiece home position of a multi-axis machine tool. Int J Mach Tool Manu 48:338–349

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the Ministry of Science and Technology of Taiwan under grant no. MOST 105-2622-E-150-010-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Yu Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, CY., Lin, P.D. Gear manufacturing using power-skiving method on six-axis CNC turn-mill machining center. Int J Adv Manuf Technol 95, 609–623 (2018). https://doi.org/10.1007/s00170-017-1154-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1154-8

Keywords

Navigation