A rapid and precision hot embossing of LGP micro-arch lens array inside core microgrooves: simulation and experiment

ORIGINAL ARTICLE
  • 22 Downloads

Abstract

The hot embossing needs the heat preservation for precision micro-forming, thus leading to inefficiency. A hot embossing of polymer micro-arch lens array in half molten is proposed for the application of light guide plate (LGP). It only performs a thermal deformation for micron-scale surface layer to be squeezed into core microgrooves. First, the micro-optic illumination of LGP was analyzed to design the micro-arch lens array; then the micro-grinding was employed to machine smooth microgrooves on ceramic core die; finally, the hot embossing experiments were conducted to adjust the thermal and structural parameters for modeling micro-arch height. It is shown that the micro-arch lens array may be rapidly and precisely formed inside the core microgrooves in half molten. The micro-arch height reaches 22 μm at a loading time of 5 s. The loading temperature and the core microgroove angle greatly influence the micro-arch height. The parameterized model of micro-arch height and radius may be used to optimize the hot embossing variables and the core microgroove parameters. The LGP patterned with the micro-arch lens array increases the irradiance intensity by 16% and its uniformity by 210% compared with smooth one, respectively.

Keywords

Hot embossing Microlens array Micro-grinding LGP Die core Micro-optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The work was supported by the Natural Science Foundation of China (No. 61475046), the Guangdong Science Foundation of China (No. 2015A030311015), the Guangzhou Science and Technology Project (No. 201508030012), and the Guangdong Science and Technology Project (No. 2014B010104003).

References

  1. 1.
    Young CK (2014) LGP pattern design with single LED light source. Optik 125:1341–1345CrossRefGoogle Scholar
  2. 2.
    KC B, Faruk O, JAM A, Leao AL, Tjong J, Sain M (2016) Sisal-glass fiber hybrid biocomposite: optimization of injection molding parameters using Taguchi method for reducing shrinkage. Compos Part A-Appl Sci Manuf 83:152–159CrossRefGoogle Scholar
  3. 3.
    Metwally K, Barriere T, Khan-Malek C (2016) Replication of micrometric and sub-micrometric structured surfaces using micro-injection and micro-injection compression moulding. Int J Adv Manuf Technol 83:779–789CrossRefGoogle Scholar
  4. 4.
    Chang CY, Chu JH (2016) Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films. Int J Adv Manuf Technol 89:1–10CrossRefGoogle Scholar
  5. 5.
    Gang C, Sahli M, Gelin J, Barriere T (2016) Physical modelling, numerical simulation and experimental investigation of microfluidic devices with amorphous thermoplastic polymers using a hot embossing process. J Mater Process Technol 229:36–53CrossRefGoogle Scholar
  6. 6.
    Wu CH, Lu CH (2008) Fabrication of an LCD light guide plate using closed-die hot embossing. J Micromech Microeng 18(3):285–288CrossRefGoogle Scholar
  7. 7.
    Toosi SF, Moradi S, Ebrahimi M, Hatzikiriakos SG (2016) Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl Surf Sci 378:426–434CrossRefGoogle Scholar
  8. 8.
    Giuseppe AC, Renê MG, Tayeb MB, Renato GJ (2017) Assessment of replication fidelity of optical microstructures by hot embossing. Int J Adv Manuf Technol 88:303–316CrossRefGoogle Scholar
  9. 9.
    Shimizu T, Tanaka N, Tada Y, Hara Y, Nakamura N, Taniuchi J, Takase K, Ito T, Shingubara S (2016) Fabrication of nanocone arrays by two step metal assisted chemical etching method. Microelectron Eng 153:55–59CrossRefGoogle Scholar
  10. 10.
    Yang R, Jiang J, Meng WJ, Wang WJ (2006) Numerical simulation and fabrication of microscale, multilevel, tapered mold inserts using UV-Lithographie, Galvanoformung, Abformung (LIGA) technology. Microsyst Technol 12:545–553CrossRefGoogle Scholar
  11. 11.
    Fu YQ, Bryan NKA, Shing ON, Hung NP (2000) Influence of the redeposition effect for focused ion beam 3D micromachining in silicon. Int J Adv Manuf Technol 16:877–880CrossRefGoogle Scholar
  12. 12.
    Rathod V, Doloi B, Bhattacharyya B (2017) Fabrication of microgrooves with varied cross-sections by electrochemical micromachining. Int J Adv Manuf Technol 2017:1–14Google Scholar
  13. 13.
    Jahan MP, Kakavand P, Kwang ELM, Rahman M, Wong YS (2015) An experimental investigation into the micro-electro-discharge machining behaviour of aluminium alloy (AA 2024). Int J Adv Manuf Technol 78:1127–1139CrossRefGoogle Scholar
  14. 14.
    Zhang W, Yao YL, Chen K (2001) Modelling and analysis of UV laser micromachining of copper. Int J Adv Manuf Technol 18:323–331CrossRefGoogle Scholar
  15. 15.
    Zhang XQ, Liu K, Sunappan V, Shan XC (2015) Diamond micro engraving of gravure roller mould for roll-to-roll printing of fine line electronics. J Mater Process Technol 225:337–346CrossRefGoogle Scholar
  16. 16.
    Xie J, Luo MJ, He JL, Liu XR, Tan TW (2012) Micro-grinding of micro-groove array on tool rake surface for dry cutting of titanium alloy. Int J Precis Eng Manuf 13(10):1845–1852CrossRefGoogle Scholar
  17. 17.
    Kasztelanic R, Kujawa I, Ottevaere H, Pysz D, Stepien R, Thienpont H, Buczynski R (2015) Optical quality study of refractive lenses made out of oxide glass using hot embossing. Infrared Phys Technol 73:212–218CrossRefGoogle Scholar
  18. 18.
    Singh S, Agrawal S, Avasthi DV (2016) Design, modeling and performance analysis of dual channel semitransparent photovoltaic thermal hybrid module in the cold environment. Energ Convers Manag 114:241–250CrossRefGoogle Scholar
  19. 19.
    Mayer N, Prowe J, Havar T, Hinterhölzl R, Drechsler K (2016) Structural analysis of composite components considering manufacturing effect. Compos Struct 140:776–782CrossRefGoogle Scholar
  20. 20.
    Chang CY, Yang SY, Huang LS, Chang JH (2006) Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold. Infrared Phys Technol 48:163–161CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Jin Xie
    • 1
  • Yuning Jiang
    • 1
  • Jinan Liu
    • 1
  • Tianrong Man
    • 1
  1. 1.School of Mechanical & Automotive EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations