Integration of design rules and process modelling within SPIF technology-a review on the industrial dissemination of single point incremental forming

  • Daniel Afonso
  • Ricardo Alves de Sousa
  • Ricardo Torcato


Incremental sheet forming (ISF) processes like single-point incremental forming (SPIF) have been majorly studied since the beginning of the 2000s. Besides the applications in the prototyping field, ISF processes can also be used in the manufacture of unique parts and small batches. This capability led to new business possibilities, enabling the development of exclusive or custom products. Despite being a free-form manufacture process, ISF has some geometric limitations, mainly due to the forming mechanics and formability limit of the materials. Thus, it is important to establish well-defined guidelines to grant a feasible design. This paper presents a knowledge basis to design and manufacture ISF parts, mainly by SPIF. The possible part configurations and the design orientation are settled, allowing for a suitable part development. The hardware to perform incremental forming operations is outlined and the forming process is described, presenting alternative solutions. The process modelling is completed with a brief description of methods to improve part quality.


SPIF Design guidelines Part design Manufacture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams D, Jeswiet J (2014) Design rules and applications of single-point incremental forming. Proc Inst Mech Eng B J Eng Manuf 229(5):253–262Google Scholar
  2. 2.
    Aerens R, Eyckens P, Bael AV, Duflou JR (2009) Force prediction for single point incremental forming deduced from experimental and fem observations. Int J Adv Manuf Technol 9(12): 969–982Google Scholar
  3. 3.
    Afonso D, Alves de Sousa R, Torcato R (2017) Incremental forming of tunnel type parts. In: 17th international conference on sheet metal, SHEMET17Google Scholar
  4. 4.
    Afonso D, Alves de Sousa R, Torcato R, Sousa JP, Santos R, Valente R (2017) Case studies on industrial applicability of single point incremental forming. Ciência 2017—Encontro com a Ciência e Tecnologia em PortugalGoogle Scholar
  5. 5.
    Allwood J, Houghton NE, Jackson KP (2005) The design of an incremental sheet forming machine. Adv Mater Res 6(8):471–478CrossRefGoogle Scholar
  6. 6.
    Alves de Sousa RJ, Ferreira JAF, Sá de Farias JB, Torráo JND, Afonso D, Martins MABE (2014) Spif-a: on the development of a new concept of incremental forming machine. Struct Eng Mech 59(5):645–660CrossRefGoogle Scholar
  7. 7.
    Ambrogio G, Napoli L, Filice L, Gagliardi F, Muzzupappa M (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162–163:156–162CrossRefGoogle Scholar
  8. 8.
    Amino M, Mizoguchi M, Terauchi Y, Maki T (2014) Current status of “dieless” amino’s incremental forming. Procedia Eng 81:54–62CrossRefGoogle Scholar
  9. 9.
    Aoyama S, Amino H, Lu Y, Matsubara S (2000) Apparatus for dieless forming plate materials. European Patent EP0970764Google Scholar
  10. 10.
    Appermont R, Mieghem BV, Bael AV, Bens J, Ivens J, Vanhove H, Behera A, Duflou J (2012) Sheet-metal based molds for low-pressure processing of thermoplastics. In: Proceedings of the 5th bi-annual PMI conference, pp 383–388Google Scholar
  11. 11.
    Azevedo NG, Farias JS, Bastos RP, Teixeira P, Davim JP, de Sousa RJA (2015) Lubrication aspects during single point incremental forming for steel and aluminum materials. Int J Precis Eng Manuf 16(3):589–595CrossRefGoogle Scholar
  12. 12.
    Bailly D, Bambach M, Hirt G, Pofahl T, Puppa GD, Trautz M (2015) Investigation on the producibility of freeform facade elements made of sheet metal as self-supporting structures by means of incremental sheet forming. In: The METEC and 2nd European steel technology and application daysGoogle Scholar
  13. 13.
    Bambach M, Araghi BT, Hirt G (2009) Strategies to improve the geometric accuracy in asymmetric single point incremental forming. Prod Eng Res Dev 3(2):145–156CrossRefGoogle Scholar
  14. 14.
    Baranovskaya Y (2016) A bridge too far, Complex Modelling, Centre for IT and Architecture, The Royal Danish Academy of Fine Arts- Schools of Architecture, Design and ConservationGoogle Scholar
  15. 15.
    Bastos R, Alves de Sousa R, Ferreira JAF (2015) Enhancing time efficiency on single point incremental forming processes. Int J Mater Form 9(5):653–662CrossRefGoogle Scholar
  16. 16.
    Behera AK, Ou H (2016) Effect of stress relieving heat treatment on surface topography and dimensional accuracy of incrementally formed grade 1 titanium sheet parts. Int J Adv Manuf Technol 87(9–11):3233–3248CrossRefGoogle Scholar
  17. 17.
    Behera AK, Vanhove H, Lauwers B, Duflou J (2011) Accuracy improvement in single point incremental forming through systematic study of feature interactions. Key Eng Mater 473:881–888CrossRefGoogle Scholar
  18. 18.
    Behera AK, Verbert J, Lauwers B, Duflou J (2013) Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. Comput Aided Des 45(3):575–590CrossRefGoogle Scholar
  19. 19.
    Blaga A, Oleksik V (2013) A study on the influence of the forming strategy on the main strains, thickness reduction, and forces in a single point incremental forming process. Adv Mater Sci Eng 2013(382635):1–10CrossRefGoogle Scholar
  20. 20.
    Callegari M, Gabrielli A, Palpacelli MC, Principi M (2008) Incremental forming of sheet metal by means of parallel kinematics machines. ASME J Manuf Sci Eng 130(5):0545011–0545015CrossRefGoogle Scholar
  21. 21.
    Castelan J, Schaeffer L, Daleffe A, Fritzen D, Salvaro V, da Silva FP (2014) Manufacture of custom-made cranial implants from dicom® images using 3d printing, cad/cam technology and incremental sheet forming. Braz J Biomed Eng 30(3):265–273Google Scholar
  22. 22.
    Centeno G, Bagudanch I, Morales-Palma D, García-Romeu ML, Gonzalez-Perez-Somarriba B, Martinez-Donaire AJ, Gonzalez-Perez LM, Vallellano C (2017) Recent approaches for the manufacturing of polymeric cranial prostheses by incremental sheet forming. Procedia Eng 183:180–187CrossRefGoogle Scholar
  23. 23.
    Do VC, Nguyen DT, Cho JH, Kim YS (2016) Incremental forming of 3d structured aluminum sheet. Int J Precis Eng Manuf 17(2):217–223CrossRefGoogle Scholar
  24. 24.
    Duflou J, Lauwers B, Verbert J (2007) Study on the achievable accuracy in single point incremental forming. In: Advanced Methods in Material Forming. Springer, Berlin, HeidelbergGoogle Scholar
  25. 25.
    Emmens W, van den Boogaard A (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Technol 209:3688–3695CrossRefGoogle Scholar
  26. 26.
    Emmens W, Sebastiani G, van den Boogaard A (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210:981–997CrossRefGoogle Scholar
  27. 27.
    European Commission (2016) EN Horizon 2020 Work Programme 2016–2017. European CommissionGoogle Scholar
  28. 28.
    Gardez SAR (2008) Economic analysis of low volume sheet metal products manufactured by single point incremental forming process. Master’s thesis, UET LahoreGoogle Scholar
  29. 29.
    Gottmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng 5(3): 263–271CrossRefGoogle Scholar
  30. 30.
    Ham M, Jeswiet J (2008) Dimensional accuracy of single point incremental forming. Int J Mater Form Suppl 1:1171–1174CrossRefGoogle Scholar
  31. 31.
    Hussain G, Khan HR, Gao L, Hayat N (2013) Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy. Mater Manuf Process 28(3):324–329CrossRefGoogle Scholar
  32. 32.
    Jeswiet J, Micarib F, Hirtc G, Bramleyc A, Dufloue J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114CrossRefGoogle Scholar
  33. 33.
    Jeswiet J, Adams D, Doolan M, McAnulty T, Gupta P (2015) Single point and asymmetric incremental forming. Adv Manuf 3(4):253–262CrossRefGoogle Scholar
  34. 34.
    Kalo A (2015) N-bowls.
  35. 35.
    Kopac J, Kampus Z (2005) Incremental sheet metal forming on cnc milling machine-tool. J Mater Proc Tech 162–163: 622–628CrossRefGoogle Scholar
  36. 36.
    Lendel R, Milutinovic M, Ivanisevic A, Vilotic D, Movrin D, Skakun P (2014) Single point incremental forming of large-size components. J Technol Plast 39(1):59–66Google Scholar
  37. 37.
    Leszak E (1967) Apparatus and process for incremental dieless forming. E Patent US3342051A1Google Scholar
  38. 38.
    Li Y, Daniel WJ, Liu Z, Lu H, Meehan PA (2015) Deformation mechanics and efficient force prediction in single point incremental forming. J Mater Process Technol 221:100–111CrossRefGoogle Scholar
  39. 39.
    Liu Z, Li Y, Meehan PA (2013) Vertical wall formation and material flow control for incremental sheet forming by revisiting multistage deformation path strategies. Mater Manuf Process 28:562–571CrossRefGoogle Scholar
  40. 40.
    Meier H, Dewald O, Zhang J (2005) A new robot-based sheet metal forming process. Adv Mater Res 6–8:465–470CrossRefGoogle Scholar
  41. 41.
    Micari F, Geiger M, Duflou J, Shirvani B, Clarke R, Lorenzo RD, Fratini L (2007) Incremental forming process for the accomplishment of automotive details. Key Eng Mater 344:559–566CrossRefGoogle Scholar
  42. 42.
    Paniti I (2014) New solutions in incremental sheet forming. Master’s thesis, Hungarian Academy of Sciences Institute for Computer Science and ControlGoogle Scholar
  43. 43.
    Penalva M (2014) Conformado incremental flexibilidad y bajo coste para la transformacin de chapa. interempresasnetGoogle Scholar
  44. 44.
    Petek A, Kuzman K, Kopac J (2009) Deformations and forces analysis of single point incremental sheet metal forming. Arch Mater Sci Eng 35(2):107–116Google Scholar
  45. 45.
    Sá de Farias J, Ferreira J, Marabuto S, Campos AA, Martins M, de Sousa RA (2014) Smart manufacturing innovation and transformation: interconnection and intelligence. IGI Global, chap Towards Smart Manufacturing Techniques using Incremental Sheet Forming, pp 159–189Google Scholar
  46. 46.
    Sá de Farias JB, Martins MABE, Afonso DG, Marabuto SR, Ferreira JAF, Alves de Sousa RJ (2013) Cad/cam strategies for a parallel kinematics spif machine. Key Eng Mater 554–557:2221–2229CrossRefGoogle Scholar
  47. 47.
    Silva MB, Skjødt M, Bay N, Martins PAF (2008) Theory of single point incremental forming. J Mater Process Technol 57(1):247–252Google Scholar
  48. 48.
    Skjødt M, Silva MB, Bay N, Martins PAF, Lenau T (2007) Single point incremental forming using a dummy sheet. In: Proceedings of the 2nd ICNFT - 2nd international conference on new forming technology, pp 267–276Google Scholar
  49. 49.
    Skjødt M, Bay N, Endelt B, Ingarao G (2008) Multi stage strategies for single point incremental forming of a cup. In: Proceedings of the 11 conference on material forming ESAFORMGoogle Scholar
  50. 50.
    Thyssen L, Seim P, Strökle D, Kuhlenkötte B (2016) On the increase of geometric accuracy with the help of stiffening elements for robot-based incremental sheet metal forming. In: 19th ESAFORM conferenceGoogle Scholar
  51. 51.
    Vanhove H, Gu J, Sol H, Duflou J (2011) Process window extension for incremental forming through optimal work plane rotation. In: 10th international conference on technology of plasticityGoogle Scholar
  52. 52.
    Vanhove H, Carette Y, Vancleef S, Duflou J (2017) Production of thin shell clavicle implants through single point incremental forming. Procedia Eng 183:174–179CrossRefGoogle Scholar
  53. 53.
    Zha G, Xu J, Shi X, Zhou X, Lu C (2015) Forming process of automotive body panel based on incremental forming technology. Metall Min Ind 2015(12):350–357Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Daniel Afonso
    • 1
    • 2
  • Ricardo Alves de Sousa
    • 1
  • Ricardo Torcato
    • 2
    • 3
  1. 1.TEMA: Centre for Mechanical Technology and Automation, Department of Mechanical EngineeringUniversity of AveiroAveiroPortugal
  2. 2.School of Design, Management and Production Technologies Northern AveiroUniversity of AveiroSantiago de Riba-UlPortugal
  3. 3.Centre for Research in Ceramic and Composite Materials, CICECOUniversity of AveiroAveiroPortugal

Personalised recommendations