Skip to main content
Log in

Optimal build orientation based on material changes for FGM parts

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The frequent changing of materials in the functionally gradient material (FGM) part printing process is detrimental to the build time, material, quality, and system stability. Thus, the number of material changes (NMCs) is adopted as a criterion to select the best build orientation. In this paper, the NMCs of a FGM part are formulated as a multiple of a NMC and a slicing function. First, an FGM part is voxelized and discretized into material patterns. Then, the NMC function for each layer is obtained by counting the number of material patterns in a layer. Finally, the voxel model is adaptively sliced with the improved layer depth normal image techniques. This algorithmic procedure can compute the NMCs for an arbitrary orientation of any FGM parts. To find the best orientation, the entire orientation space is converted to an extended Gaussian image (EGI) using a Gaussian map, considering the geometric and material data for a FGM part. To accelerate the searching process, a point clustering algorithm is designed to select the-most-possible candidate orientations to reduce the orientation space to 1/10 ~ 1/20. Five example FGM parts are tested to demonstrate the algorithm’s abilities and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qian X, Dutta D (2003) Design of heterogeneous turbine blade. Comput Aided Des 35(3):319–329

    Article  Google Scholar 

  2. Cheng J, Lin F (2005) Approach of heterogeneous bio-modeling based on material features. Comput Aided Des 37(11):1115–1126

    Article  Google Scholar 

  3. Singh A, Ramakrishnan A, Baker D, Biswas A, Dinda GP (2017) Laser metal deposition of nickel coated Al 7050 alloy. J Alloys Compd 719:151–158

    Article  Google Scholar 

  4. Lewis GK, Nemec R, Milewski J, Thoma DJ, Cremers D, Barbe M (1994) Directed light fabrication [J]. Proc Spie 17–20

  5. Mazumder J, Choi J, Nagarathnam K, Koch J, Hetzner D (1997) The direct metal deposition of H13 tool steel for 3-D components. JOM 49(8):8–8

    Article  Google Scholar 

  6. Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44(April 2017):67–76

    Article  Google Scholar 

  7. Shin KH, Natu H, Dutta D, Mazumder J (2003) A method for the design and fabrication of heterogeneous objects. Mater Des 24(5):339–353

    Article  Google Scholar 

  8. Kim HC, Lee SH (2005) Reduction of post-processing for stereolithography systems by fabrication-direction optimization. Comput Aided Des 37(7):711–725

    Article  Google Scholar 

  9. Hur J, Lee DK (1998) The development of a CAD environment to determine the preferred build-up direction for layered manufacturing. Int J Adv Manuf Technol 14(4):247–254

    Article  Google Scholar 

  10. Phatak AM, Pande SS (2012) Optimum part orientation in rapid prototyping using genetic algorithm [J]. J Manuf Syst 31(4):395–402

    Article  Google Scholar 

  11. Taufik M, Jain PK (2013) Role of build orientation in layered manufacturing: a review. Int J Manuf Technol Manag 27(1):47–73

    Google Scholar 

  12. Alexander P, Allen S, Dutta D (1998) Part orientation and build cost determination in layered manufacturing. Comput Aided Des 30(5):343–356

    Article  Google Scholar 

  13. Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tool Manu 44(6):585–594

    Article  MATH  Google Scholar 

  14. Masood SH, Rattanawong W, Iovenitti P (2000) Part build orientations based on volumetric error in fused deposition modelling. Int J Adv Manuf Technol 16(3):162–168

    Article  Google Scholar 

  15. Luo N, Wang Q (2016) Fast slicing orientation determining and optimizing algorithm for least volumetric error in rapid prototyping. Int J Adv Manuf Technol 83(5):1297–1313

    Article  Google Scholar 

  16. Senthilkumaran K, Pandey PM, Rao PVM (2009) Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des 30(8):2946–2954

    Article  Google Scholar 

  17. Singhal SK, Jain PK, Pandey PM (2013) Adaptive slicing for SLS prototyping. Comput- Aided Des Applic 5(5):412–423

    Google Scholar 

  18. Morgan HD, Cherry JA, Jonnalaganna S, Ewing D, Sienz J (2016) Part orientation optimisation for the additive layer manufacture of metal components. Int J Adv Manuf Technol 29(1):1–9

    Google Scholar 

  19. Caulfield B, Mchugh PE, Lohfeld S (2007) Dependence of mechanical properties of polyamide components on build parameters in the SLS process. J Mater Process Technol 182(1–3):477–488

    Article  Google Scholar 

  20. Shin KH, Dutta D (2002) Process-planning for layered manufacturing of heterogeneous objects using direct metal deposition. J Comput Inf Sci Eng 2(4):330–344

    Article  Google Scholar 

  21. Hong SB, Lee KH (2006) Determination of optimal build direction in rapid prototyping with variable slicing. Int J Adv Manuf Technol 28(3):307–313

    Google Scholar 

  22. Lan PT, Chou SY, Chen LL, Gemmill D (1997) Determining fabrication orientations for rapid prototyping with stereolithography apparatus. Comput Aided Des 29(1):53–62

    Article  Google Scholar 

  23. Pham DT, Dimov SS, Gault RS (1999) Part orientation in stereolithography. Int J Adv Manuf Technol 15(9):674–682

    Article  Google Scholar 

  24. Canellidis V, Giannatsis J, Dedoussis V (2009) Genetic-algorithm-based multi-objective optimization of the build orientation in stereolithography. Int J Adv Manuf Technol 45(7):714–730

    Article  Google Scholar 

  25. Li Y, Zhang J (2013) Multi-criteria GA-based Pareto optimization of building direction for rapid prototyping. Int J Adv Manuf Technol 69(5):1819–1831

    Article  Google Scholar 

  26. Tyagi SK, Ghorpade A, Karunakaran KP, Tiwari MK (2007) Optimal part orientation in layered manufacturing using evolutionary stickers-based DNA algorithm. Virtual & Physical Prototyping 2(1):3–19

    Article  Google Scholar 

  27. Zhang J, Li Y (2013) A unit sphere discretization and search approach to optimize building direction with minimized volumetric error for rapid prototyping. Int J Adv Manuf Technol 67(1):733–743

    Article  Google Scholar 

  28. Siu YK, Tan ST (2002) Source-based’ heterogeneous solid modeling. Comput -Aided Des 34:41–55 (15)

    Article  Google Scholar 

  29. Zeng L, Lai LM-L, Qi D, Lai Y-H, Yuen MM-F (2011) Efficient slicing procedure based on adaptive layer depth normal image. Comput Aided Des 43(12):1577–1586

    Article  Google Scholar 

  30. Satherley R, Jones MW (2001) Vector-city vector distance transform. Comput Vis Image Underst 82(3):238–254

    Article  MATH  Google Scholar 

  31. Surazhsky T, Magid E, Soldea O, Elber G, and Rivlin E, et al. (2003) A comparison of Gaussian and mean curvatures estimation methods on triangular meshes, in Robotics and Automation. Proceedings. ICRA '03. IEEE International Conference on, 2003, pp. 1021–1026 vol.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Sl., Wu, Xy. & Zeng, L. Optimal build orientation based on material changes for FGM parts. Int J Adv Manuf Technol 94, 1933–1946 (2018). https://doi.org/10.1007/s00170-017-0938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0938-1

Keywords

Navigation