Skip to main content

Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel


Laser cladding is a novel additive manufacturing and surface treatment process associated with many interactive process parameters. Using the response surface method with a central composite design, a structured design of experiments approach was chosen to examine the influence of selected process parameters on the bead geometry and hardness for single-track laser-cladded specimens using AISI 420 stainless steel powder on a AISI 1018 substrate. In the present study, robust predictive models for hardness, bead aspect ratio, and wetting angle with the substrate were determined using multiple regression analysis. The geometry and hardness relationships to the process inputs were evaluated using F-statistics from the analysis of variance and compared by utilizing perturbation plots, 3D surface mapping, and contour plots. The highly coupled non-linear relationships are evident from these analyses, but this study revealed that the laser speed has the most significant effect on the bead microhardness and the powder feed rate was found to be the most significant parameter for these bead geometry parameters. The perturbation plots confirmed this sensitivity of those process parameters. This research study gives a guideline for the selection of appropriate process parameters for the laser cladding process to achieve desired hardness and bead geometry.

This is a preview of subscription content, access via your institution.


  1. 1.

    Lepski D, Bruckner F (2009) Laser cladding. In The Theory of Laser Materials Processing, edited by John Dowden, online, 119:235–79. Springer Netherlands. doi:10.2351/1.521888

  2. 2.

    Farahmand P, and Kovacevic R (2014) Parametric study and multi-criteria optimization in laser cladding by a high power direct diode laser. Lasers Manuf Mater Process, 1–20. doi:10.1007/s40516-014-0001-0

  3. 3.

    Montgomery DC (2012) Design and Analysis of Experiments. 8th Ed., Wiley, pp 478-498. doi:10.1198/tech.2006.s372

  4. 4.

    Urbanic RJ, Hedrick RW, Burford CG (2017) A process planning framework and virtual representation for bead-based additive manufacturing processes. Int J Adv Manuf Technol 90(1–4):361–376. doi:10.1007/s00170-016-9392-8

    Article  Google Scholar 

  5. 5.

    Sun Y, Hao M (2012) Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser. Opt Lasers Eng 50(7). Elsevier):985–995. doi:10.1016/j.optlaseng.2012.01.018

    Article  Google Scholar 

  6. 6.

    Saqib SM, Urbanic RJ, Aggarwal K (2014) Analysis of laser cladding bead morphology for developing additive manufacturing travel paths. Procedia CIRP 17. Elsevier B.V.:824–829. doi:10.1016/j.procir.2014.01.098

    Article  Google Scholar 

  7. 7.

    Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw 39(6):483–496. doi:10.1016/j.advengsoft.2007.03.012

    Article  Google Scholar 

  8. 8.

    Urbanic RJ, Saqib SM, Aggarwal K (2016) Using predictive modeling and classification methods for single and overlapping bead laser cladding to understand bead geometry to process parameter relationships. J Manuf Sci Eng 138(5):51012. doi:10.1115/1.4032117

    Article  Google Scholar 

  9. 9.

    Onwubolu GC, Davim JP, Oliveira C, Cardoso A (2007) Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Opt Laser Technol 39(6):1130–1134. doi:10.1016/j.optlastec.2006.09.008

    Article  Google Scholar 

  10. 10.

    Liu S, Kovacevic R (2014) Statistical analysis and optimization of processing parameters in high-power direct diode laser cladding. Int J Adv Manuf Technol 74(5–8):867–878. doi:10.1007/s00170-014-6041-y

    Article  Google Scholar 

  11. 11.

    Aggarwal K (2014) investigation of laser clad bead geometry to process parameter settings for effective parameter selection, simulation, and Optimization.MASc thesis, University of Windsor

  12. 12.

    Aggarwal K, Urbanic RJ, Aggarwal L (2014) A methodology for investigating and modelling laser clad bead geometry and process parameter relationships. SAE Int 7(2):269–279

    Google Scholar 

  13. 13.

    Mondal S, Paul CP, Kukreja LM, Bandyopadhyay A, Pal PK (2012) Application of Taguchi-based gray relational analysis for evaluating the optimal laser cladding parameters for AISI1040 steel plane surface. Int J Adv Manuf Technol 66(1–4):91–96. doi:10.1007/s00170-012-4308-8

    Google Scholar 

  14. 14.

    Ituarte IF, Coatanea E, Salmi M, Tuomi J, Partanen J (2015) Additive manufacturing in production: a study case applying technical requirements. Phys Procedia 78 (august). Elsevier B.V.:357–366. doi:10.1016/j.phpro.2015.11.050

    Article  Google Scholar 

  15. 15.

    Majumdar JD, Manna I (2011) Laser material processing. Int Mater Rev 56(5/6):341–388. doi:10.1179/1743280411Y.0000000003

    Article  Google Scholar 

  16. 16.

    Zhu Z, Dhokia VG, Nassehi A, Newman ST (2013) A review of hybrid manufacturing processes—state of the art and future perspectives. Int J Comput Integr Manuf 26(7):596–615. doi:10.1080/0951192X.2012.749530

    Article  Google Scholar 

  17. 17.

    Lee HK (2008) Effects of the cladding parameters on the deposition efficiency in pulsed Nd: YAG laser cladding. J Mater Process Technol 202(1–3):321–327. doi:10.1016/j.jmatprotec.2007.09.024

    Article  Google Scholar 

  18. 18.

    Graf B, Ammer S, Gumenyuk A, Rethmeier M (2013) Design of experiments for laser metal deposition in maintenance, repair and overhaul applications. Procedia CIRP 11. Elsevier B.V.:245–248. doi:10.1016/j.procir.2013.07.031

    Article  Google Scholar 

  19. 19.

    Alam MK, Nazemi N, Urbanic RJ, Saqib SM, Edrisy A (2017) Investigating process parameters and microhardness predictive modeling approaches for single bead 420 stainless steel laser cladding. SAE Int. doi:10.4271/2017-01-0283

  20. 20.

    Baghjari SH, Mousavi SA (2013) Effects of pulsed Nd:YAG laser welding parameters and subsequent post-weld heat treatment on microstructure and hardness of AISI 420 stainless steel. Mater Des 43:1–9. doi:10.1016/j.matdes.2012.06.027

    Article  Google Scholar 

  21. 21.

    Alam MK, Urbanic RJ, Saqib SM, Edrisy A (2015) Effect of process parameters on the microstructural evolutions of laser cladded 420 martensitic stainless steel. In: Materials science and technology conference proceedings (MS&T15), October 4–8. Columbus, Ohio, USA, pp 35–54

    Google Scholar 

  22. 22.

    Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73. doi:10.1016/j.msea.2011.08.061

    Article  Google Scholar 

  23. 23.

    Datsko J, Hartwig L, Mcclory B (2001) On the tensile strength and hardness relation for metals. J Mater Eng Perform 10:718–722. doi:10.1361/105994901770344601

    Article  Google Scholar 

  24. 24.

    Saqib SM (2016) Experimental investigation of laser cladding bead morphology and process parameter relationship for additive manufacturing process characterization - Ph.D. dissertation. University of Windsor

  25. 25.

    Weidmann E (2005) Struers application notes—metallographic preparation of stainless steel. Copenhagen: Struers A/S. Doi:01.05 / 62140005

  26. 26.

    Nazemi N, Urbanic RJ, Alam MK (2017) Hardness and residual stress modeling of powder injection laser cladding of P420 coating on AISI 1018 substrate. Int J Adv Manuf Technol. doi:10.1007/s00170-017-0760-9

  27. 27.

    Nazemi N, Urbanic RJ (2016) A finite element analysis for thermal analysis of laser cladding of mild steel with P420 steel powder. In: Proceedings of the ASME 2016 international mechanical engineering congress and exposition IMECE2016 - November 11–17. Phoenix, Arizona, USA, pp 1–10

    Google Scholar 

  28. 28.

    Nazemi N, Alam MK, Urbanic RJ, Saquib SM, Edrisy A (2017) A hardness study on laser cladded surfaces for a selected bead overlap conditions. SAE Int. doi:10.4271/2017-01-0285

  29. 29.

    Toyserkani E, Khajepour A, Corbin S (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt Lasers Eng 41(6):849–867. doi:10.1016/S0143-8166(03)00063-0

    Article  Google Scholar 

  30. 30.

    Fu Y, Loredo A, Martin B, Vannes AB (2002) A theoretical model for laser and powder particles interaction during laser cladding. J Mater Process Technol 128(1–3):106–112. doi:10.1016/S0924-0136(02)00433-8

    Article  Google Scholar 

  31. 31.

    Anderson MJ, Whitcomb PJ, Kraber SL, Adams WF (2016) Handbook for Experimenters. Stat-Ease, Inc., Minneapolis, MN

    Google Scholar 

  32. 32.

    Epps JA (2000) Compatibility of a test for moisture-induced damage with superpave volumetric mix design - NCHRP Report 444, National Cooperative Highway Research Program. National Academy Press, Washington D. C

    Google Scholar 

  33. 33.

    Alam MK, Edrisy A, Urbanic RJ, Pineault J (2017) Microhardness and stress analysis of laser-cladded AISI 420 martensitic stainless steel. J Mater Eng Perform. doi:10.1007/s11665-017-2541-x

  34. 34.

    NIST/SEMATECH e-Handbook of Engineering Statistics (2013), , access date 09.02.2017

  35. 35.

    Gasko M, Rosenberg G (2011) Correlation between hardness and tensile properties in ultra-high strength dual phase steels–short communication. Mater Eng 18:155–159

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ruth Jill Urbanic.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, M.K., Urbanic, R.J., Nazemi, N. et al. Predictive modeling and the effect of process parameters on the hardness and bead characteristics for laser-cladded stainless steel. Int J Adv Manuf Technol 94, 397–413 (2018).

Download citation


  • Predictive modeling
  • Laser cladding
  • Bead geometry
  • Microhardness