Effect of nanoclay on thermal behavior of jute reinforced composite

Abstract

Due to enhanced mechanical strength, superior flame resistance, and decreased gas permeability, montmorillonite nanoclay has been introduced to the jute-polyester resin composite materials for structural application. Long-fiber Bangla tossa special jute is being used as reinforcement materials along with 1, 3, and 5% addition of nanoclay within the matrix-fiber mixture to find the optimum percentage of nanoclay. These doped hand lay-up-processed plates are used to made samples for dynamic mechanical analysis and thermogravimetry testing as per ASTM standards. Temperature-induced weight loss due to thermal decomposition was measured and char residue was calculated up to 1000 °C, where 5% added nanoclay samples showed better thermal stability. Viscoelastic properties through storage modulus and loss modulus showed better stability with 1% nanoclay-added composite in dynamic mechanical analysis. Moisture and temperature did not affect the tested samples significantly in diminutive exposure for 1% nanoclay-added samples even though there is a loss of storage modulus 12 to 30% for 3 and 5% nanoclay-added samples, respectively.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Khan MA, Ganster J, Fink H-P (2009) Hybrid composites of jute and man-made cellulose fibers with polypropylene by injection moulding. Compos A: Appl Sci Manuf 40(6):846–851

    Article  Google Scholar 

  2. 2.

    Ray D et al (2001) Effect of alkali treated jute fibres on composite properties. Bull Mater Sci 24(2):129–135

    Article  Google Scholar 

  3. 3.

    Gon DD, Kousik, Palash P, Subhankar M (2012) Jute composites as wood substitute. Int J Text Sci 1(6):84–93

    Article  Google Scholar 

  4. 4.

    Sindhu S et al (2006) Synthesis and characterization of ferrite nanocomposite spheres from hydroxylated polymers. J Magn Magn Mater 296(2):104–113

    Article  Google Scholar 

  5. 5.

    Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2006) Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos Struct 72:429–437

    Article  Google Scholar 

  6. 6.

    Alam J, Riaz U, Ahmad S (2007) Effect of ferrofluid concentration on electrical and magnetic properties of the Fe3O4/PANI nanocomposites. J Magn Magn Mater 314(2):93–99

    Article  Google Scholar 

  7. 7.

    Rahmanian ST, Suraya KS, Shazed AR, Mohd Salleh MA, MA Yusoff HM (2013) Carbon and glass hierarchical fibers: influence of carbon nanotubes on tensile, flexural and impact properties of short fiber reinforced composites. Mater Des 43:10–16

    Article  Google Scholar 

  8. 8.

    Novakova AA, Lanchinskaya VY, Volkov AV, Gendler TS, Kiseleva TY, Moskvina MA et al (2003) Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles. J Magn Magn Mater 258(259):354–357

    Article  Google Scholar 

  9. 9.

    Nathani H, Gubbala S, Misra RDK (2004) Magnetic behaviour of nickel ferrite–polyethylene nanocomposites synthesized by mechanical milling process. Mater Sci Eng B-Adv 111(2 3):95–100

    Article  Google Scholar 

  10. 10.

    Voigt A, Heinrich M, Martin C, Llobera A, Gruetzner G, Pérez-Murano F (2007) Improved properties of epoxy nanocomposites for specific applications in the field of MEMS/NEMS. Microelectron Eng 84(5–8):1075–1079

    Article  Google Scholar 

  11. 11.

    Sasso C, Pasquale M, Giudici L, Lim SH, Na S (2006) Piezomagnetic coefficients of polymer bonded Co-ferrites. Sensor Actuat A Phys 129(1–2):159–162

    Article  Google Scholar 

  12. 12.

    Dey A, De S, De A, De S (2004) Characterization and dielectric properties of polyaniline–TiO2 nanocomposites. Nanotechnology 15(9):1277–1283

    Article  Google Scholar 

  13. 13.

    Rout J, Misra M, Mohanty A K, Nayak S K & Tripathy S S (2003) SEM observations of the fractured surfaces of coir composites, J Reinf Plast Compos 22:1083

  14. 14.

    Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos A: Appl Sci Manuf 39(10):1632–1637

    Article  Google Scholar 

  15. 15.

    Muhammad Hasibul Hasan and Md. Sazib Mollik (2015) Mechanical Performance of Montmorillonite Dispersed Jute Reinforced Composite MATEC Web of Conferences. https://doi.org/10.1051/matecconf/20153001007

  16. 16.

    Hasan MH, Mollik S (2016) Crystallization kinetics and thermal behaviors of multi-walled carbon nanotube dispersed jute reinforced composite ARPN Journal of Engineering and Applied Sciences. 11(6):4137–4142

  17. 17.

    Mollik S, Tariq I, Hasan MH (2015) Structural applications and emerging trends of nano-and biocomposites: a review. Adv Mater Res 1115:345–348

    Article  Google Scholar 

  18. 18.

    Ghasemnejad H et al (2009) Experimental studies on fracture characterisation and energy absorption of GFRP composite box structures. Compos Struct 88(2):253–261

    Article  Google Scholar 

  19. 19.

    Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS (2004) Rick-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63:305–312

    Article  Google Scholar 

  20. 20.

    Persico P et al (2011) Mechanical and thermal behaviour of ecofriendly composites reinforced by Kenaf and Caroà fibers. Int J Polym Sci. https://doi.org/10.1155/2011/841812

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mahbubur Rashid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.H., Mollik, M.S. & Rashid, M.M. Effect of nanoclay on thermal behavior of jute reinforced composite. Int J Adv Manuf Technol 94, 1863–1871 (2018). https://doi.org/10.1007/s00170-017-0883-z

Download citation

Keywords

  • Jute fiber
  • Nanoclay
  • Dynamic mechanical analysis
  • Viscoelastic property