Skip to main content

Cutting of AA6061 by a multimode pulsed Nd:YAG laser with high pressure gas: characterisation of kerf geometry and quality


In this work, laser cutting of 6061-T6 aluminium alloy sheets is investigated using a multimode 150 W Nd:YAG pulsed laser, adopting N2 at 15 bar, with the aim to investigate the effect of process parameters on the kerf geometry and roughness. The study was divided in two steps: first, in order to determine the domain where a throughout cut is possible, cutting tests were performed at a fixed average power (150 W), changing the pulse duration and the cutting speed. Then, in order to assess the influence of the process parameters on kerf geometry and roughness, a second set of tests was carried out, at the same average power and pressure, changing the pulse duration, the scan speed and the beam travel direction. The tests were performed adopting a full factorial design 32 × 2 according to the DoE methodology. Analysis of variance (ANOVA) was used in order to determine which of the process parameters affects the kerf characteristic and how. Response surface method (RSM) and multiresponse optimisation (MRO) were adopted to optimise the process conditions. The various effects of the process parameters on the kerf geometry and quality have been analysed and discussed. Finally, it was found that the MRO is able to select a parameter set able to minimise the effects of the multimode energy distribution beam.

This is a preview of subscription content, access via your institution.


  1. 1.

    Kalpakjian S, Schmid SR (2013) Manufacturing engineering and technology. Prentice Hall

  2. 2.

    Chryssolouris G (1991) Laser machining: theory and practice (mechanical engineering series). Springer, New York

    Book  Google Scholar 

  3. 3.

    Tamilarasan A, Rajamani D (2017) Multi-response optimization of Nd:YAG laser cutting parameters of Ti-6Al-4V superalloy sheet. J Mech Sci Technol 31(2):813–821. doi:10.1007/s12206-017-0133-1

    Article  Google Scholar 

  4. 4.

    Morace RE, Leone C, De Iorio I (2006) Cutting of thin metal sheets using Nd:YAG lasers with different pulse duration. Proc. of SPIE 6157:61570Q. doi:10.1117/12.661182

    Article  Google Scholar 

  5. 5.

    Adalarasan R, Santhanakumar M, Thileepan S (2016) Selection of optimal machining parameters in pulsed CO2 laser cutting of Al6061/Al2O3 composite using Taguchi-based response surface methodology (T-RSM). Int. J. Adv. Manuf. Technol. doi:10.1007/s00170-016-8978-5

  6. 6.

    Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G (2009) An investigation of quality in CO2 laser cutting of aluminium. CIRP J Manuf Sci and Techn 2:61–69. doi:10.1016/j.cirpj.2009.08.005

    Article  Google Scholar 

  7. 7.

    Tahir AFM, Rahim EA (2016) A study on the laser cutting quality of ultra-high strength steel. J Mech Eng Sci 10(2):2145–2158. doi:10.15282/jmes.10.2.2016.18.0202

    Google Scholar 

  8. 8.

    Karatas C, Keles O, Uslan I, Usta Y (2006) Laser cutting of steel sheets: influence of workpiece thickness and beam waist position on kerf size and striation formation. J Mater Process Technol 172:22–29. doi:10.1016/j.jmatprotec.2005.08.017

    Article  Google Scholar 

  9. 9.

    Tonshoff H.K., Emmelmann C., Laser cutting of advanced ceramics, CIRP Ann-Manuf. Techn, 38 (1989), 219–222, doi: 10.1016/S0007-8506(07)62689-4

  10. 10.

    Quintero F, Pou J, Lusquiños F, Boutinguiza M, Sot R, Pérez-Amor M (2001) Nd:YAG laser cutting of advanced ceramics. Proc of SPIE 4419:756–760. doi:10.1117/12.437083

    Article  Google Scholar 

  11. 11.

    Leone C, Pagano N, Lopresto V, De Iorio I (2009) Solid state Nd:YAG laser cutting of CFRP sheet: influence of process parameters on kerf geometry and HAZ, 17th Int. Conf. on Composite Materials - ICCM-17, July 27–31, Edinburgh, UK, CoDesign 85394

  12. 12.

    Fürst A, Mahrle A, Hipp D, Klotzbach A Hauptmann J, Wetzig A, Beyer E, Dual Wavelength Laser Beam Cutting of High-Performance Composite Materials, Adv Eng Mater 19(2) Art. N° 1600356, doi:10.1002/adem.201600356

  13. 13.

    Leone C, Genna S, Caggiano A, Tagliaferri V, Molitierno R (2016) Influence of process parameters on kerf geometry and surface roughness in Nd:YAG laser cutting of Al 6061T6 alloy sheet. Int J Adv Manuf Technol 87(9–12):2745–2762. doi:10.1007/s00170-016-8667-4

    Article  Google Scholar 

  14. 14.

    Chen SL (1999) The effects of high-pressure assistant-gas flow on high-power CO2 laser cutting. J Mater Process Technol 88(1):57–66. doi:10.1016/S0924-0136(98)00402-6

    Article  Google Scholar 

  15. 15.

    Lamikiz A, Lacalle LNL, Sanchez JA, Pozo D, Etayo JM, Lopez JM (2005) CO2 laser cutting of advanced high strength steels (AHSS). Appl Surf Sci 242:362–368. doi:10.1016/j.apsusc.2004.08.039

    Article  Google Scholar 

  16. 16.

    Rajaram N, Ahmad JS, Cheraghi SH (2003) CO2 laser cut quality of 4130 steel. Int J Mach Tool Manu 43:351–358. doi:10.1016/S0890-6955(02)00270-5

    Article  Google Scholar 

  17. 17.

    Riveiro A, Quintero F, Lusquiños F, Pou J, Pérez-Amor M (2008) Laser cutting of 2024-T3 aeronautic aluminum alloy. J Laser Appl 20(4):230–235. doi:10.2351/1.2995769

    Article  Google Scholar 

  18. 18.

    Riveiro A, Quintero F, Lusquiños F, Comesaña R, Del Val J, Pou J (2011) The role of the assist gas nature in laser cutting of aluminum alloys. Phys Procedia 12:548–554. doi:10.1016/j.phpro.2011.03.069

    Article  Google Scholar 

  19. 19.

    Riveiro A, Quintero F, Lusquiños F, Comesana R, Pou J (2011) Effects of processing parameters on laser cutting of aluminium-copper alloys using off-axial supersonic nozzles. Appl Surf Sci 257(2011):5393–5397. doi:10.1016/j.apsusc.2010.11.061

    Article  Google Scholar 

  20. 20.

    Araújo D, Carpio FJ, Méndez D, García AJ, Villar MP, García R, Jiménez D, Rubio L (2013) Microstructural study of CO2 laser machined heat affected zone of 2024 aluminum alloy. Appl Surf Sci 208-209(1):210–217. doi:10.1016/S0169-4332(02)01375-2

    Google Scholar 

  21. 21.

    Salonitis K, Stournaras A, Tsoukantas G, Stavropoulos P, Chryssolouris G (2007) A theoretical and experimental investigation on limitations of pulsed laser drilling. J Mater Process Technol 183:96–103. doi:10.1016/j.jmatprotec.2006.09.031

    Article  Google Scholar 

  22. 22.

    Thawari G, Sundar JKS, Sundararajan G, Joshi SV (2005) Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol 170:229–239. doi:10.1016/j.jmatprotec.2005.05.021

    Article  Google Scholar 

  23. 23.

    Ghany KA, Newishy M (2005) Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J Mater Process Technol 168:438–447. doi:10.1016/j.jmatprotec.2005.02.251

    Article  Google Scholar 

  24. 24.

    Leone C, Genna S, Caggiano A, Tagliaferri V, Molitierno R (2015) An investigation on Nd:YAG laser cutting of Al 6061 T6 alloy sheet. Procedia CIRP 28:64–69. doi:10.1016/j.procir.2015.04.012

    Article  Google Scholar 

  25. 25.

    Dubey AK, Yadava V (2008) Optimization of kerf quality during pulsed laser cutting of aluminum alloy sheet. J Mater Process Technol 204:412–418. doi:10.1016/j.jmatprotec.2007.11.048

    Article  Google Scholar 

  26. 26.

    Sharma A, Yadava V (2012) Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for straight profile. Opt Laser Technol 44(1):159–168. doi:10.1016/j.optlastec.2011.06.012

    Article  Google Scholar 

  27. 27.

    Sharma A, Yadava V (2013) Modelling and optimization of cut quality during pulsed Nd:YAG laser cutting of thin Al-alloy sheet for curved profile. Opt Laser Technol 51(1):77–88. doi:10.1016/j.optlaseng.2012.07.012

    Article  Google Scholar 

  28. 28.

    Sharma A, Yadava V (2013) Simultaneous optimisation of average kerf taper and surface roughness during pulsed Nd: YAG laser cutting of thin Al-alloy sheet for straight profile. Int J Manuf Technol Manag 27:112–126. doi:10.1504/IJMTM.2013.058622

    Google Scholar 

  29. 29.

    Kardas OO, Keles O, Akhtar S, Yilbas BS (2014) Laser cutting of rectangular geometry in 2024 aluminum alloy: thermal stress analysis. Opt Laser Technol 64:247–256. doi:10.1016/j.optlastec.2014.05.029

    Article  Google Scholar 

  30. 30.

    Akhtar S, Kardas OO, Keles O, Yilbas BS (2014) Laser cutting of rectangular geometry into aluminum alloy: effect of cut sizes on thermal stress field. Opt Lasers Eng 61:57–66. doi:10.1016/j.optlaseng.2014.04.016

    Article  Google Scholar 

  31. 31.

    Steen WM, Mazumder J (2010) Laser mat. proc., IV Ed. Springer-Verlag, London

    Book  Google Scholar 

  32. 31.

    Ready JF, Farson DFJ (2001) LIA handbook of laser materials processing, Springer-Verlag Berlin and Heidelberg GmbH and Co. UK

  33. 33.

    Metals Handbook (1990) Vol.2—properties and selection: nonferrous alloys and special-purpose materials, 10th ed., ASM International

  34. 34.

    Genna S, Leone C, Palumbo B, Tagliaferri F (2015) Statistical approach to fiber laser microcutting of NIMONIC® C263 superalloy sheet used in effusion cooling system of aero engines. Procedia CIRP 33:520–525. doi:10.1016/j.procir.2015.06.067

    Article  Google Scholar 

  35. 35.

    Kim B, Kim T, Jang Y, Chung K (2010) Investigation of striation formation in thin stainless steel tube during pulsed Nd:YAG laser cutting process by numerical analysis. Metall Mater Trans A 32A:2623–2625. doi:10.1007/s11661-001-0052-7

    Google Scholar 

  36. 36.

    Rao BT, Kaul R, Tiwari P, Nath AK (2005) Inert gas cutting of titanium sheet with pulsed mode CO2 laser. Opt Laser Eng 43(12):1330–1348. doi:10.1016/j.optlaseng.2004.12.009

    Article  Google Scholar 

  37. 37.

    Montgomery DC (2008) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  38. 38.

    Dittrich M, Dix M, Kuhl M, Palumbo B, Tagliaferri F (2014) Process analysis of water abrasive fine jet structuring of ceramic surfaces via design of experiment. Procedia CIRP 14:442–447. doi:10.1016/j.procir.2014.03.030

    Article  Google Scholar 

  39. 39.

    Kros JF, Mastrangelo CM (2001) Comparing methods for the multi-response design problem. Qual Reliab Eng Int 17(5):379–390. doi:10.1002/qre.404

    Article  Google Scholar 

  40. 40.

    Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12(4):214

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to C. Leone.

Electronic supplementary material


(PDF 429 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leone, C., Genna, S. & Tagliaferri, V. Cutting of AA6061 by a multimode pulsed Nd:YAG laser with high pressure gas: characterisation of kerf geometry and quality. Int J Adv Manuf Technol 94, 925–940 (2018).

Download citation


  • Laser cutting
  • Aluminium alloy
  • Kerf geometry
  • Roughness
  • Multiresponse optimisation