Analytical approach of asymmetrical thermomechanical rolling by slab method

ORIGINAL ARTICLE
  • 27 Downloads

Abstract

In this paper, based on the slab method and focusing on the rate-dependent flow condition, asymmetrical thermomechanical rolling (ATMR) is investigated to establish a new model for calculation of the rolling force. Unlike the former models where the rate-dependent condition of the yield shear stress has not been considered, in this study, a visco-plastic flow stress formulation of material is used for applying the rate and temperature sensitivity parameters and kinetic of work hardening and softening of the material. Comparison of the present analytical model with experimental data and other models reveals the precision of calculation. An asymmetrical rolling index (ARI) is introduced to evaluate the effects of rolling parameters on asymmetrical conditions of the rolling process. Using the response surface methodology (RSM), the interaction effects and contribution of rolling parameters are studied. Investigations indicate that the speed rate plays a role as an intensifier of the parameters’ effect on the ARI. Furthermore, the occurrence of high value of speed rate with a low percent of thickness reduction leads to the restricted rise of the ARI levels. The verification of the statistical models indicates an acceptable competency of results.

Keywords

Asymmetrical thermomechanical rolling (ATMR) Slab method Asymmetrical rolling index (ARI) Response surface methodology (RSM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aboutorabi A, Assempour A, Afrasiab H (2016) Analytical approach for calculating the sheet output curvature in asymmetrical rolling: in the case of roll axis displacement as a new asymmetry factor. Int J Mech Sci 105:11–22CrossRefGoogle Scholar
  2. 2.
    Kadkhodaei M, Salimi M, Poursina M (2007) Analysis of asymmetrical sheet rolling by a genetic algorithm. Int J Mech Sci 49(5):622–634CrossRefGoogle Scholar
  3. 3.
    Qwamizadeh M, Kadkhodaei M, Salimi M (2012) Asymmetrical sheet rolling analysis and evaluation of developed curvature. Int J Adv Manuf Technol 61(1–4):227–235CrossRefGoogle Scholar
  4. 4.
    Hwang Y-M, Tzou G-Y (1995) An analytical approach to asymmetrical hot-sheet rolling considering the effects of the shear stress and internal moment at the roll gap. J Mater Process Technol 52(2):399–424. doi:10.1016/0924-0136(94)01731-F CrossRefGoogle Scholar
  5. 5.
    Hwang Y, Tzou G (1995) Analysis of asymmetrical hot strip rolling by the slab method. J Mater Eng Perform 4(3):265–274CrossRefGoogle Scholar
  6. 6.
    Hwang Y-M, Tzou G-Y (1997) Analytical and experimental study on asymmetrical sheet rolling. Int J Mech Sci 39(3):289–303CrossRefMATHGoogle Scholar
  7. 7.
    Tzou G-Y (1999) Relationship between frictional coefficient and frictional factor in asymmetrical sheet rolling. J Mater Process Technol 86(1):271–277CrossRefGoogle Scholar
  8. 8.
    Salimi M, Sassani F (2002) Modified slab analysis of asymmetrical plate rolling. Int J Mech Sci 44(9):1999–2023CrossRefMATHGoogle Scholar
  9. 9.
    Mousavi SA, Ebrahimi S, Madoliat R (2007) Three dimensional numerical analyses of asymmetric rolling. J Mater Process Technol 187:725–729CrossRefGoogle Scholar
  10. 10.
    Gudur P, Salunkhe M, Dixit U (2008) A theoretical study on the application of asymmetric rolling for the estimation of friction. Int J Mech Sci 50(2):315–327CrossRefMATHGoogle Scholar
  11. 11.
    Tian Y, Guo Y-H, Wang Z-D, Wang G-D (2009) Analysis of rolling pressure in asymmetrical rolling process by slab method. J Iron Steel Res Int 16(4):22–38CrossRefGoogle Scholar
  12. 12.
    Zhang S, Zhao D, Gao C, Wang G (2012) Analysis of asymmetrical sheet rolling by slab method. Int J Mech Sci 65(1):168–176CrossRefGoogle Scholar
  13. 13.
    Chen F, Feng G, Cui Z (2014) Mathematical modeling of critical condition for dynamic recrystallization. Procedia Eng 81:486–491CrossRefGoogle Scholar
  14. 14.
    Qwamizadeh M, Kadkhodaei M, Salimi M (2014) Asymmetrical rolling analysis of bonded two-layer sheets and evaluation of outgoing curvature. Int J Adv Manuf Technol 73(1–4):521–533CrossRefGoogle Scholar
  15. 15.
    Afrouz F, Parvizi A (2015) An analytical model of asymmetric rolling of unbounded clad sheets with shear effects. J Manuf Process 20, Part 1:162–171. doi:10.1016/j.jmapro.2015.08.007 CrossRefGoogle Scholar
  16. 16.
    Tang D, Liu X, Song M, Yu H (2014) Experimental and theoretical study on minimum achievable foil thickness during asymmetric rolling. PLoS One 9(9):e106637CrossRefGoogle Scholar
  17. 17.
    Byon S, Kim S, Lee Y (2004) Predictions of roll force under heavy-reduction hot rolling using a large-deformation constitutive model. Proc Inst Mech Eng B J Eng Manuf 218(5):483–494CrossRefGoogle Scholar
  18. 18.
    Liu J, Kawalla R (2012) Influence of asymmetric hot rolling on microstructure and rolling force with austenitic steel. Trans Nonferrous Metals Soc China 22, Supplement 2:s504–s511. doi:10.1016/S1003-6326(12)61753-1 CrossRefGoogle Scholar
  19. 19.
    Wronski M, Wierzbanowski K, Bacroix B, Lipinski P (2015) Asymmetric rolling textures of aluminium studied with crystalline model implemented into FEM. Materials Science and Engineering Conference Series 82(1): xxxxxxGoogle Scholar
  20. 20.
    Yu HL, Lu C, Tieu AK, Li HJ, Godbole A, Zhang SH (2016) Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: a review. Adv Eng Mater 18(5):754–769CrossRefGoogle Scholar
  21. 21.
    Salimi M, Kadkhodaei M (2004) Slab analysis of asymmetrical sheet rolling. J Mater Process Technol 150(3):215–222CrossRefGoogle Scholar
  22. 22.
    Yanagida A, Liu J, Yanagimoto J (2003) Flow curve determination for metal under dynamic recrystallization using inverse analysis. Mater Trans 44(11):2303–2310CrossRefGoogle Scholar
  23. 23.
    Galantucci LM, Tricarico L (1999) Thermo-mechanical simulation of a rolling process with an FEM approach. J Mater Process Technol 92–93:494–501. doi:10.1016/S0924-0136(99)00242-3 CrossRefGoogle Scholar
  24. 24.
    Siciliano F Jr, Jonas JJ (2000) Mathematical modeling of the hot strip rolling of microalloyed Nb, multiply-alloyed Cr-Mo, and plain C-Mn steels. Metall Mater Trans A 31(2):511–530CrossRefGoogle Scholar
  25. 25.
    Yanagida A, Yanagimoto J (2005) Regression method of determining generalized description of flow curve of steel under dynamic recrystallization. ISIJ Int 45(6):858–866CrossRefGoogle Scholar
  26. 26.
    Box G, Wilson K (1951) On the experimental attainment of optimum condition. J Royal Statistical Soc 13:1–45Google Scholar
  27. 27.
    Ayaz M, Khaki DM, Arab NBM (2014) Influence of hot rolling on formability of Nb-microalloyed steel: an experimental design study. Trans Indian Inst Metals 67(3):429–436CrossRefGoogle Scholar
  28. 28.
    Davidson MJ, Balasubramanian K, Tagore G (2008) Surface roughness prediction of flow-formed AA6061 alloy by design of experiments. J Mater Process Technol 202(1):41–46CrossRefGoogle Scholar
  29. 29.
    Razani N, Aghchai AJ, Dariani BM (2014) Flow-forming optimization based on hardness of flow-formed AISI321 tube using response surface method. Int J Adv Manuf Technol 70(5–8):1463–1471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • N. A. Razani
    • 1
  • B. Mollaei Dariani
    • 1
  • M. Soltanpour
    • 2
  1. 1.Mechanical Engineering DepartmentAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of Engineering and TechnologyImam Khomeini International UniversityQazvinIran

Personalised recommendations