Experimental study on micro electrical discharge machining with helical electrode

  • Kan Wang
  • Qinhe Zhang
  • Guang Zhu
  • Qingyu Liu
  • Yuhua Huang
ORIGINAL ARTICLE
  • 100 Downloads

Abstract

With the development of micro electro mechanical system (MEMS), the application of micro components is becoming increasingly wide. Micro electrical discharge machining (micro EDM) is one of the most effective manufacturing processes for micro components. During past few decades, some innovative methods for improving micro EDM performance have been proposed. Using special-shaped electrode is just one of them. Although micro EDM with helical electrode has been proposed and the availability has been proved for several years, relatively little is known about the precise effect of helical electrode rotation on micro EDM performance. In this study, micro through-holes were machined on Ti6Al4V sample with a cylindrical electrode and helical electrode. The helical electrode achieves better machining performance overall compared to the cylindrical electrode due to its favorable debris removal ability. The higher the rotational speed of helical electrode, the higher the material removal rate (MRR). When using the cylindrical electrode, the MRR first increases and then decreases after reaching a peak at 3000 rpm. Higher MRR is obtainable with the helical electrode with reverse rotation; with forward rotation, it yields higher machining precision (lower overcut and taper rate).

Keywords

Electrical discharge machining Helical electrode Rotational speed Material removal rate Overcut 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maity KP, Singh RK (2012) An optimisation of micro-EDM operation for fabrication of micro-hole. Int J Adv Manuf Technol 61:1221–1229CrossRefGoogle Scholar
  2. 2.
    Takezawa H, Yokote N, Mohri N (2016) Influence of external magnetic field on permanent magnet by EDM. Int J Adv Manuf Technol 87:25–30CrossRefGoogle Scholar
  3. 3.
    Dwivedi AP, Choudhury SK (2016) Effect of tool rotation on MRR, TWR and surface integrity of AISI-D3 steel using rotary EDM process. Mater Manuf Process. doi: 10.1080/10426914.2016.1140198
  4. 4.
    Wang X, Liu Z, Xue R, Tian Z, Huang Y (2014) Research on the influence of dielectric characteristics on the EDM of titanium alloy. Int J Adv Manuf Technol 72(5–8):979–987CrossRefGoogle Scholar
  5. 5.
    Li L, Li ZY, Wei XT, Cheng X (2014) Machining characteristics of Inconel 718 by sinking-EDM and wire-EDM. Mater Manuf Process 30(8):968–973. doi: 10.1080/10426914.2014.973579 CrossRefGoogle Scholar
  6. 6.
    Lauwers B, Kruth JP, Liu W, Eeraerts W, Schacht B, Bleys P (2004) Investigation of material removal mechanisms in EDM of composite ceramic materials. J Mater Process Technol 149(1–3):347–352. doi: 10.1016/j.jmatprotec.2004.02.013 CrossRefGoogle Scholar
  7. 7.
    Amoli ER, Salehinia S, Ghoreishi M (2016) Comparative study of expert predictive models based on adaptive neuro fuzzy inference system, nonlinear autoregressive exogenous and Hammerstein-Wiener approaches for electrical discharge machining performance: material removal rate and surface roughness. Proc Inst Mech Eng B J Eng Manuf 230(9):1690–1701. doi: 10.1177/0954405415625923 CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Kunieda M, Abe K (2016) Comparison on foil EDM characteristics of single crystal SiC between in deionized water and in EDM oil. Int J Adv Manuf Technol 86:2905–2912CrossRefGoogle Scholar
  9. 9.
    Wang K, Zhang Q, Liu Q, Zhu G, Zhang J (2016) Experimental study on micro electrical discharge machining of porous stainless steel. Int J Adv Manuf Technol:1–7. doi: 10.1007/s00170-016-9611-3
  10. 10.
    Xie B, Zhang Y, Zhang J, Ren S, Liu X (2015) Flow field simulation of ultrasonic vibration assisted EDM of holes array. 2015 seventh international conference on advanced communication and networking. IEEE:28–31Google Scholar
  11. 11.
    Goiogana M, Sarasua JA, Ramos JM, Echavarri L, Cascón I (2016) Pulsed ultrasonic assisted electrical discharge machining for finishing operations. Int J Mach Tools Manuf 109:87–93. doi: 10.1016/j.ijmachtools.2016.07.005 CrossRefGoogle Scholar
  12. 12.
    Gao C, Liu Z (2003) A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol 139(1–3):226–228. doi: 10.1016/s0924-0136(03)00224-3 CrossRefGoogle Scholar
  13. 13.
    Jahan MP, Wong YS, Rahman M (2012) Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J Manuf Process 14(3):343–359. doi: 10.1016/j.jmapro.2012.07.001 CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Xu Z, Zhu D, Qu N, Zhu Y (2015) Drilling of film cooling holes by a EDM/ECM in situ combined process using internal and side flushing of tubular electrode. Int J Adv Manuf Technol 83(1–4):505–517. doi: 10.1007/s00170-015-7575-3 Google Scholar
  15. 15.
    Vincent N, Kumar AB (2016) Experimental investigations into EDM behaviours of En41b using copper and brass rotary tubular electrode. Procedia Technol 25:877–884. doi: 10.1016/j.protcy.2016.08.196 CrossRefGoogle Scholar
  16. 16.
    Lin YC, Yan BH, Chang YS (2000) Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM. J Mater Process Technol 104(3):171–177CrossRefGoogle Scholar
  17. 17.
    Chen ST, Yeh MC (2016) Development of an in-situ high-precision micro-hole finishing technique. J Mater Process Technol 229:253–264. doi: 10.1016/j.jmatprotec.2015.09.025 CrossRefGoogle Scholar
  18. 18.
    Plaza S, Sanchez JA, Perez E, Gil R, Izquierdo B, Ortega N, Pombo I (2014) Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Precis Eng 38(4):821–827. doi: 10.1016/j.precisioneng.2014.04.010 CrossRefGoogle Scholar
  19. 19.
    Liu HS, Yan BH, Huang FY, Qiu KH (2005) A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J Mater Process Technol 169(3):418–426. doi: 10.1016/j.jmatprotec.2005.04.084 CrossRefGoogle Scholar
  20. 20.
    Hung JC, Lin JK, Yan BH, Liu HS, Ho PH (2006) Using a helical micro-tool in micro-EDM combined with ultrasonic vibration for micro-hole machining. J Micromech Microeng 16(12):2705–2713. doi: 10.1088/0960-1317/16/12/025 CrossRefGoogle Scholar
  21. 21.
    Liu Q, Zhang Q, Zhu G, Wang K, Zhang J (2015) Dong C. Effect of electrode size on the performances of micro-EDM. Mater Manuf Process 31:391–396. doi: 10.1080/10426914.2015.1059448 CrossRefGoogle Scholar
  22. 22.
    Odar F, Hamilton WS (1964) Forces on a sphere accelerating in a viscous fluid. J Fluid Mech 18(2):302–314CrossRefMATHGoogle Scholar
  23. 23.
    Zhu Z, Lin J (2000) Pressure gradient force, Saffman lift, and Magnus lift on the fiber-like particle in fluid. J China Textile Univ :Engl Ed 2:23–27Google Scholar
  24. 24.
    Bajpai V, Mahambare P, Singh RK (2015) Effect of thermal and material anisotropy of pyrolytic carbon in vibration-assisted micro-EDM process. Mater Manuf Process 31(14):1879–1888. doi: 10.1080/10426914.2015.1127937 CrossRefGoogle Scholar
  25. 25.
    Teimouri R, Baseri H (2012) Effects of magnetic field and rotary tool on EDM performance. J Manuf Process 14(3):316–322. doi: 10.1016/j.jmapro.2012.04.002 CrossRefGoogle Scholar
  26. 26.
    Singh NK, Pandey PM, Singh KK (2015) EDM with an air-assisted multi-hole rotating tool. Mater Manuf Process 31(14):1872–1878. doi: 10.1080/10426914.2015.1127954 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Kan Wang
    • 1
  • Qinhe Zhang
    • 1
  • Guang Zhu
    • 1
  • Qingyu Liu
    • 1
  • Yuhua Huang
    • 1
  1. 1.Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical EngineeringShandong UniversityJinanChina

Personalised recommendations