Predictive design approach of high-cycle fatigue limit of shot-peened parts

  • R. Seddik
  • E. J. Petit
  • Ben Sghaier Rabii
  • A. Atig
  • R. Fathallah


This attempt proposes an engineering design approach to predict the high-cycle fatigue limit of shot-peened parts. The effects of the shot peening surface treatment on the high-cycle fatigue performance of Waspaloy, a nickel superalloy widely used in the airframe sector, are investigated. The proposed approach consists in (i) predicting the initial shot peening surface properties, (ii) simulating the evolution of the shot peening surface properties occurring during fatigue loading, and (iii) deducing the new fatigue limit of the shot-peened surface in the case of tensile, torsion, and combined tensile-torsion loading. The physical model is implemented and analyzed using the finite element analysis. The mathematical model sheds light on the evolution of the shot-peened surface performance. It allows determining the influence of the industrial parameters in order to optimize the shot peening process operating conditions. The prediction of the fatigue performance for different shot peening conditions leads to have physically consistent results.


Shot peening Residual stress Cyclic work hardening Surface damage Fatigue performance prediction Ni-based superalloy Waspaloy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sidhom N, Laamouri A, Fathallah R, Braham C, Lieurade HP (2005) Fatigue strength improvement of 5083 H11 Al-alloy T-welded joints by shot peening: experimental characterization and predictive approach. Int J Fatigue 27:729–745CrossRefGoogle Scholar
  2. 2.
    Liu WC, Dong J, Zhang P, Korsunsky AM, Song X, Ding WJ (2011) Improvement of fatigue properties by shot peening for Mg–10Gd–3Y alloys under different conditions. Mater Sci Eng A 528:5935–5944CrossRefGoogle Scholar
  3. 3.
    Torres MAS, Voorwald HJC (2002) An evaluation of shot peening residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886CrossRefGoogle Scholar
  4. 4.
    Dalaei K, Karlsson B, Svensson LE (2011) Stability of residual stresses created by shot peening of pearlitic steel and their influence on fatigue lifetime. Mater Sci Eng A5282:1008–1015CrossRefGoogle Scholar
  5. 5.
    Fathallah R, Sidhom H, Brahamand C, Castex L (2003) Effect of surface properties on high cycle fatigue behavior of a shot peened ductile steel. Mater Sci Technol 19:1050–1056CrossRefGoogle Scholar
  6. 6.
    Gentil B, Desvignes M, Castex L (1987) Analyse des surfaces grenaillées: Fissuration, rugosité et contraintes résiduelle. Mater Tech 75:493–497CrossRefGoogle Scholar
  7. 7.
    Eleiche AM, Megahed MM, Add-allah NM (2001) The shot peening effect on the HCF behavior of high-strength martensitic steels. J Mater Process Technol 113:502–508CrossRefGoogle Scholar
  8. 8.
    Miao HY, Larose S, Perron C, Lévesque M (2009) On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv Eng Softw 40:1023–1038CrossRefMATHGoogle Scholar
  9. 9.
    Miao HY, Larose S, Perron C, Lévesque M (2010) An analytical approach to relate shot peening parameters to Almen intensity. Surf Coat Technol 205:2055–2066CrossRefGoogle Scholar
  10. 10.
    Gangaraja SMH, Guaglianoa M, Farrahi GH (2014) An approach to relate shot peening finite element simulation to the actual coverage. Surf Coat Technol 243:39–45CrossRefGoogle Scholar
  11. 11.
    Al-Hassani STS (1981) Mechanical aspects of residual stress development in shot peening. First International Conference on Shot Peening, University of Manchester, UK, pp 583–602Google Scholar
  12. 12.
    Wohlfahrt H (1984) The influence of peening conditions on the resulting distribution of residual stress. Second International Conference on Shot Peening, Chicago, pp 316–331Google Scholar
  13. 13.
    Guechichi H, Castex L, Frelat J, Inglebert G (1986) Predicting residual stress due to shot peening. Impact surface treatment. Elsevier, London, pp 11–12Google Scholar
  14. 14.
    Khabou MT, Castex L, Inglebert G (1989) Effect of material behavior law on the theoretical shot peening results. Eur J Mech A/Solids 9:537–549MATHGoogle Scholar
  15. 15.
    Fathallah R, Inglebert G, Castex L (1998) Prédiction de la déformation plastique et des contraintes résiduelles induites dans des pièces métalliques par grenaillage. Mater Sci Technol 14:631–639CrossRefGoogle Scholar
  16. 16.
    J. Zarka, J. Casier (1979) Mechanics Today: Pergamon Mechanics Today Series, In: Nemat-Nasser, vol 6Google Scholar
  17. 17.
    Al-Obaid YF (1990) Three dimensional dynamic finite element analysis for shot peening. Mech Comput Struct 36:681–689CrossRefGoogle Scholar
  18. 18.
    Al-Hassani STS, Kormi K, Webb DC (1999) Numerical simulation of multiple shot impact. 7th International Conference on Shot Peening, Warsaw, Poland, p 217–227Google Scholar
  19. 19.
    Meguid SA, Shagal G, Stranart JC, Daly J (1999) Three-dimensional dynamic finite element analysis of shot peening induced residual stresses. Finite Elem Anal Des 31:179–191CrossRefMATHGoogle Scholar
  20. 20.
    Meguid SA, Shagal G, Stranar JC (1999) Finite element modelling of shot peening residual stresses. J Mater Process Technol 92–93:401–404CrossRefGoogle Scholar
  21. 21.
    Meguid SA, Shagal G, Stranart JC (2002) 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model. Int J Impact Eng 27:119–134CrossRefGoogle Scholar
  22. 22.
    G.H. Majzoobi, R. Azizi (2005) A 3D numerical study of shot peening process using multiple shot impacts. 9th International conference on Shot Peening, France, ParisGoogle Scholar
  23. 23.
    Frija M, Hassine T, Fathallah R, Bouraoui C, Dogui A (2006) FEM modelling of shot peening process: prediction of the compressive residual stresses, the plastic deformations and the surface integrity. Mater Sci Eng 426:173–180CrossRefGoogle Scholar
  24. 24.
    Kim T, Lee H, Kim M, Jung S (2012) A 3D FE model with plastic shot for evaluation of equi-biaxial peening residual stress due to multi-impacts. Surf Coat Technol 206:3981–3988CrossRefGoogle Scholar
  25. 25.
    Denkena B, Köhler J, Breidenstein B, Mörke T (2011) Elementary studies on the inducement and relaxation of residual stress. Procedia Eng 19:88–93CrossRefGoogle Scholar
  26. 26.
    Liu J, Yuan H (2010) Prediction of residual stress relaxations in shot-peened specimens and its application for the rotor disc assessment. Mater Sci Eng A 527:6690–6698CrossRefGoogle Scholar
  27. 27.
    Zaroog OS, Aidy A, Sahari BB, Zahari R (2011) Modeling of residual stress relaxation of fatigue in 2024-T351 aluminium alloy. Int J Fatigue 33:279–285CrossRefGoogle Scholar
  28. 28.
    S. Kodama (1972) The behaviour of residual stress during fatigue stress cycles. In: Proceedings of the international conference on mechanical behaviour of materials II, society of material science, Kyoto, Japan, p 111–118.Google Scholar
  29. 29.
    HO. Fuchs (1986) Mechanical engineer’s handbook New York, WileyGoogle Scholar
  30. 30.
    A. Deperrois 1991 Calcul de la limite d’endurance des aciers. PhD thesis, Ecole Polytechnique: Paris, FranceGoogle Scholar
  31. 31.
    Fathallah R, Laamouri A, Sidhom H (2004) High cycle fatigue behavior prediction of shot-peened parts. Int J Fatigue 26:1053–1067CrossRefGoogle Scholar
  32. 32.
    Seddik R, Bahloul A, Atig A, Fathallah R (2016) A simple methodology to optimize shot-peening process parameters using finite element simulations. J Adv Manuf Technol. doi: 10.1007/s00170-016-9532-1
  33. 33.
    ABAQUS (2011)Theory Manual Version 6.10.Published by Hibbitt, Karlsson and Sorensen Inc. USAGoogle Scholar
  34. 34.
    P.J. Armstrong, C.O. Frederick 1966 A mathematical representation of the multi-axial Bauschinger effect. Technical Report RD/B/N731, CEGBGoogle Scholar
  35. 35.
    J-L. Chaboche (1977) Sur l’utilisation des variables d’état interne pour la description de la viscoplasticité cyclique avec endommagement. In Problèmes Non Linéaires de Mécanique, Symposium Franco-Polonais de Rhéologie et Mécanique;137–159Google Scholar
  36. 36.
    J. Lemaitre, J.L. Chaboche: Mécanique des matériaux solides. Dunod (Edition 2), ISBN 2 10 005662X, 2002.Google Scholar
  37. 37.
    B. Crossland: Effect of large hydrostatic pressure’s on the torsional fatigue strength of an alloy steel. International conference on fatigue of metals, London: Institution of Mechanical Engineers, 1956.Google Scholar
  38. 38.
    Abdul-Latif A (1996) Constitutive equations for cyclic plasticity of Waspaloy. Int J Plast 12:967–985CrossRefMATHGoogle Scholar
  39. 39.
    R. Fathallah (1994) Modélisation du Procédé de Grenaillage: Incidence des Billes et Taux de Recouvrement. PhD thesis ENSAM ParisGoogle Scholar
  40. 40.
    Oja M, Ravi Chandran KS, Tryon RG (2010) Orientation imaging microscopy of fatigue crack formation in Waspaloy: crystallographic conditions for crack nucleation. Int J Fatigue 32:551–556CrossRefGoogle Scholar
  41. 41.
    SAE J444: Cast shot and grit size specifications for peening and cleaning, SAE Standards. 1993Google Scholar
  42. 42.
    Papadopoulos IV, Davol P, Gorla C, Filippini M, Bernasconi A (1997) A comparative study of multi-axial high cycle fatigue criteria of metals. Int J Fatigue 19:219–235CrossRefGoogle Scholar
  43. 43.
    Xie L, Wen Y, Zhan K, Wang L, Jiang C, Ji V (2016) Characterization on surface mechanical properties of Ti6Ale4V after shot peening. J Alloys Compd 666:65–70CrossRefGoogle Scholar
  44. 44.
    Ahmed AA, Mhaede M, Basha M, Wollmann M, Wagner L (2016) The effect of shot peening parameters and hydroxyapatite coating on surface properties and corrosion behavior of medical grade AISI 316L stainless steel. Surf Coat Technol 280:347–358CrossRefGoogle Scholar
  45. 45.
    Laamouri A, Sidhom H, Braham C (2013) Evaluation of residual stress relaxation and its effect on fatigue strength of AISI 316L stainless steel ground surfaces: experimental and numerical approaches. Int J Fatigue 48:109–121CrossRefGoogle Scholar
  46. 46.
    P.S. Prevéy The effect of shot peening coverage on residual stress, cold work and fatigue in a Ni-Cr-Mo low alloy steel. 8th International Conference on Shot Peening Garmisch-Partenkirchen, Germany, 2002, 16–20Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • R. Seddik
    • 1
  • E. J. Petit
    • 2
  • Ben Sghaier Rabii
    • 1
  • A. Atig
    • 1
  • R. Fathallah
    • 1
  1. 1.National Engineering School of SousseUniversity of SousseSousseTunisia
  2. 2.Laboratoire d’Etude des Microstructures et de Mécanique des MatériauxUniversité de LorraineMetzFrance

Personalised recommendations