Influence of BA4047 filler addition through Mamdani fuzzy logic optimization for double-sided T-joint welding of aluminum alloys using low-power fiber laser

  • Shamini Janasekaran
  • Mohd Fadzil Jamaludin
  • Farazila Yusof
  • Mohd Hamdi Abdul Shukor
  • Tadashi Ariga
ORIGINAL ARTICLE
  • 53 Downloads

Abstract

Double-sided laser beam welding of skin-stringer joints is a proven method for many industrial applications such as in aircraft assemblies where riveted differential joints are being replaced with welded integral structures. In the present study, dissimilar aluminum alloys of AA2024-0 and AA7075-T6 were laser welded on both sides in a T-joint configuration using a low-power Yb-fiber laser with the addition of a BA4047 filler wire. The optimized parameters were determined by developing a Mamdani fuzzy smart model. The influence of BA4047 filler wires on weld morphology was investigated using optical microscopy (OM) and scanning electron microscope (SEM). The cross-section of the joints revealed that the fusion zone (FZ) and heat affected zones (HAZ) are wider when filler wire was added as compared to those without it. This result shows that the low-power fiber laser has sufficient energy to melt the tip of the filler wire and subsequently the base materials, forming a liquid bridge to facilitate the smooth flow of molten metal between the stringer and the skin. No obvious voids were observed in the cross-sections of the joint interface. The strengths of joints were evaluated using a pull test, and hardness values were measured at the base metal (BM), FZ, and HAZ using the Vickers hardness test. At lower welding speeds with constant low-laser power, it was shown that the addition of the aluminum-silicon base alloy has increased the overall hardness and welding strengths of the samples.

Keywords

BA4047 Fiber laser Fuzzy AA2024 AA7075 Double-sided 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Elijah Kannatey-Asibu J (2009) Principles of laser materials processing, vol 4. John Wiley & Sons, Wiley Series on Processing of Engineering MaterialsCrossRefMATHGoogle Scholar
  2. 2.
    Ion JC (2005) Chapter 5 - engineering materials. In: Laser processing of engineering materials. Butterworth-Heinemann, Oxford, pp 139–177. doi: 10.1016/B978-075066079-2/50008-8 CrossRefGoogle Scholar
  3. 3.
    Enz J, Khomenko V, Riekehr S, Ventzke V, Huber N, Kashaev N (2015) Single-sided laser beam welding of a dissimilar AA2024-AA7050 T-joint. Mater Des 76:110–116CrossRefGoogle Scholar
  4. 4.
    Yang ZB, Tao W, Li LQ, Chen YB, Li FZ, Zhang YL (2012) Double-sided laser beam welded T-joints for aluminum aircraft fuselage panels: process, microstructure, and mechanical properties. Mater Des 33:652–658. doi: 10.1016/j.matdes.2011.07.059 CrossRefGoogle Scholar
  5. 5.
    Li M, Li ZG, Zhao Y, Li H, Wang YH, Huang J (2011) Influence of welding parameters on weld formation and microstructure of dual-laser beams welded T-joint of aluminum alloy. Adv Mater Sci Eng. doi: 10.1155/2011/767260
  6. 6.
    Ion JC (2000) Laser beam welding of wrought aluminium alloys. Sci Technol Weld Joi 5(5):265–276. doi: 10.1179/136217100101538308 CrossRefGoogle Scholar
  7. 7.
    Park YW, Yu J, Rhee S (2010) A study on the weld characteristics of 5182 aluminum alloy by Nd:Yag laser welding with filler wire for car bodies. Int J Auto Tech-Kor 11(5):729–736. doi: 10.1007/s12239-010-0086-1 CrossRefGoogle Scholar
  8. 8.
    Pinto LA, Quintino L, Miranda RM, Carr P (2010) Laser welding of dissimilar Aluminium alloys with filler materials. Weld World 54(11–12):R333–R341. doi: 10.1007/BF03266747 CrossRefGoogle Scholar
  9. 9.
    Tao W, Yang ZB, Chen YB, Li LQ, Jiang ZG, Zhang YL (2013) Double-sided fiber laser beam welding process of T-joints for aluminum aircraft fuselage panels: filler wire melting behavior, process stability, and their effects on porosity defects. Opt Laser Technol 52:1–9. doi: 10.1016/j.optlastec.2013.04.003 CrossRefGoogle Scholar
  10. 10.
    Elrefaey A, Ross NG (2015) Microstructure and mechanical properties of cold metal transfer welding similar and dissimilar aluminum alloys. Acta Metallurgica Sinica (English Letters) 28(6):715–724. doi: 10.1007/s40195-015-0252-6 CrossRefGoogle Scholar
  11. 11.
    Badini C, Pavese M, Fino P, Biamino S (2009) Laser beam welding of dissimilar aluminium alloys of 2000 and 7000 series: effect of post-welding thermal treatments on T joint strength. Sci Technol Weld Joi 14(6):484–492. doi: 10.1179/136217108x372559 CrossRefGoogle Scholar
  12. 12.
    Cicala E, Duffet G, Andrzejewski H, Grevey D (2010) Continuous welding of Al-Mg-Si alloys with Nd:YAG laser irradiation: tensile properties optimization of T-joint seams. Laser Eng 20(3–4):195–211Google Scholar
  13. 13.
    Tsirkas SA, Papanikos P, Kermanidis T (2003) Numerical simulation of the laser welding process in butt-joint specimens. J Mater Process Tech 134(1):59–69. doi: 10.1016/S0924-0136(02)00921-4 CrossRefGoogle Scholar
  14. 14.
    Kim TW, Park YW (2011) Parameter optimization using a regression model and fitness function in laser welding of aluminum alloys for car bodies. Int J Precis Eng Man 12(2):313–320. doi: 10.1007/s12541-011-0041-8 CrossRefGoogle Scholar
  15. 15.
    Fratini L, Buffa G, Shivpuri R (2009) Influence of material characteristics on plastomechanics of the FSW process for T-joints. Mater Des 30:2435–2445. doi: 10.1016/j.matdes.2008.10.014 CrossRefGoogle Scholar
  16. 16.
    Janasekaran S, Tan AW, Yusof F, Abdul Shukor M (2016) Feasibility study of low power fiber laser welding AA2024 and AA7075 alloys T-joint. Key Eng Mater 701:182–186CrossRefGoogle Scholar
  17. 17.
    Janasekaran S, Jamaludin MF, Muhamad MR, Yusof F, Abdul Shukor MH (2016) Autogenous double-sided T-joint welding on aluminum alloys using low power fiber laser. Int J Adv Manuf Technol:1–9. doi: 10.1007/s00170-016-9677-y
  18. 18.
    ASM I (1990) ASM handbook volume 2: properties and selection: nonferrous alloys and special-purpose materials, vol 2 ASM International Google Scholar
  19. 19.
    Ross TJ (2009) Fuzzy logic with engineering applications. John Wiley & SonsGoogle Scholar
  20. 20.
    Kumar S, Datta D, Sharma S, Chourasiya G, Babu D, Sharma D (2014) Estimation of distance error by fuzzy set theory required for strength determination of HDR 192Ir brachytherapy sources. J Med Phys/Assoc Med Physicists India 39(2):85Google Scholar
  21. 21.
    Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall PTR, Upper Saddle River, NJ, USAMATHGoogle Scholar
  22. 22.
    Rajasekaran S, Pai GAV (2003) Neural networks. Synthesis and Applications. PHI Learning, Fuzzy Logic and Genetic AlgorithmGoogle Scholar
  23. 23.
    Hossain A, Hossain A, Nukman Y, Hassan MA, Harizam MZ, Sifullah AM, Parandoush P (2016) A fuzzy logic-based prediction model for kerf width in laser beam machining. Mater Manuf Process 31(5):679–684. doi: 10.1080/10426914.2015.1037901 CrossRefGoogle Scholar
  24. 24.
    Tavares SMO, Castro RAS, Richter-Trummer V, Vilaca P, Moreira PMGP, de Castro PMST (2010) Friction stir welding of T-joints with dissimilar aluminium alloys: mechanical joint characterisation. Sci Technol Weld Joi 15(4):312–318CrossRefGoogle Scholar
  25. 25.
    Nukman Y, Hassan MA, Harizam MZ (2013) Optimization of prediction error in CO2 laser cutting process by Taguchi artificial neural network hybrid with genetic algorithm. Appl Math Inf Sci 7(1):363–370CrossRefGoogle Scholar
  26. 26.
    Gao X-L, Liu J, Zhang L-J, Zhang J-X (2014) Effect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets. Mater Charact 93:136–149. doi: 10.1016/j.matchar.2014.04.005 CrossRefGoogle Scholar
  27. 27.
    Sanchez-Amaya JM, Delgado T, Gonzalez-Rovira L, Botana FJ (2009) Laser welding of aluminium alloys 5083 and 6082 under conduction regime. Appl Surf Sci 255(23):9512–9521. doi: 10.1016/j.apsusc.2009.07.081 CrossRefGoogle Scholar
  28. 28.
    Atabaki MM, Nikodinovski M, Chenier P, Ma J, Liu W, Kovacevic R (2014) Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration. Opt Laser Technol 59:68–92. doi: 10.1016/j.optlastec.2013.12.008 CrossRefGoogle Scholar
  29. 29.
    Cao X, Wallace W, Immarigeon J-P, Poon C (2003) Research in laser welding of wrought aluminium alloys. I laser welding processes Mater Manuf Process 18(1):1–22Google Scholar
  30. 30.
    Cao X, Wallace W, Immarigeon J-P, Poon C (2003) Research in laser welding of wrought aluminium alloys. II. Metallurgical microstructures, defects, and mechanical properties. Mater Manuf Process 18(1):23–49CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Shamini Janasekaran
    • 1
  • Mohd Fadzil Jamaludin
    • 2
    • 3
  • Farazila Yusof
    • 1
    • 2
  • Mohd Hamdi Abdul Shukor
    • 1
    • 2
  • Tadashi Ariga
    • 4
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Centre of Advanced Manufacturing and Material Processing (AMMP), Lingkungan BudiUniversity of MalayaKuala LumpurMalaysia
  3. 3.Metal Forming Research Group, School of Mechanical EngineeringUniversiti Sains Malaysia (Engineering Campus)PenangMalaysia
  4. 4.Department of Materials Science, School of EngineeringTokai UniversityKanagawaJapan

Personalised recommendations