Advertisement

Experimental and numerical studies on ultrasonic welding of dissimilar metals

  • Mantra Prasad Satpathy
  • Susanta Kumar Sahoo
ORIGINAL ARTICLE

Abstract

Ultrasonic metal welding (USMW) is gaining popularity for joining thin and dissimilar metal sheets and foils. In the present study, a new type of booster and horn is proposed and modeled with adequate precision. The modal analysis module of finite element method (FEM) is used to analyze the effects of different step lengths and fillet radius on its natural frequency. The dynamic analysis has also been performed to find out the stress distribution in both parts under cyclic loading conditions. It enables to locate the highly stressed nodal regions (hot areas), and the relevant temperature field is consequently determined. A 0.02 and 0.008% errors have been noticed for horn and booster while comparing FEM results with the experimental values respectively. The experiments are conducted on the 0.3Al-0.3Cu specimens with the designed parts to study the effects of various controllable process parameters like vibration amplitude, weld pressure, and weld time on the tensile shear and T-peel strengths. Intermetallic compound of Al2Cu with a layer of 1.5-μm thickness has been formed for the good weld samples, and it is very much sensitive towards the parameter combinations. This paper provides an insight not only to produce high-quality welds but also to solve many industrial issues by explaining the comprehensive background theories on fatigue and vibro-thermographic analyses of the booster and horn along with detailed microscopic analyses of fractured surface.

Keywords

Ultrasonic metal welding Finite element method Dynamic analysis Cyclic loading Tensile shear strength Microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Annoni M, Carboni M (2011) Ultrasonic metal welding of AA 6022-T4 lap joints: part I—technological characterisation and static mechanical behaviour. Sci Technol Weld Join 16:107–115. doi: 10.1179/1362171810Y.0000000015 CrossRefGoogle Scholar
  2. 2.
    Chen Y-C, Bakavos D, Gholinia A, Prangnell PB (2012) HAZ development and accelerated post-weld natural ageing in ultrasonic spot welding aluminium 6111-T4 automotive sheet. Acta Mater 60:2816–2828CrossRefGoogle Scholar
  3. 3.
    Watanabe T, Sakuyama H, Yanagisawa A (2009) Ultrasonic welding between mild steel sheet and Al-Mg alloy sheet. J Mater Process Technol 209:5475–5480. doi: 10.1016/j.jmatprotec.2009.05.006 CrossRefGoogle Scholar
  4. 4.
    Zhou B, Thouless MD, Ward SM (2006) Predicting the failure of ultrasonic spot welds by pull-out from sheet metal. Int J Solids Struct 43:7482–7500CrossRefGoogle Scholar
  5. 5.
    Zhu Z, Lee KY, Wang X (2012) Ultrasonic welding of dissimilar metals, AA6061 and Ti6Al4V. Int J Adv Manuf Technol 59:569–574. doi: 10.1007/s00170-011-3534-9 CrossRefGoogle Scholar
  6. 6.
    Al-Sarraf Z, Lucas M (2012) A study of weld quality in ultrasonic spot welding of similar and dissimilar metals. J Phys Conf Ser 382:012013. doi: 10.1088/1742-6596/382/1/012013 CrossRefGoogle Scholar
  7. 7.
    Elangovan S, Prakasan K, Jaiganesh V (2010) Optimization of ultrasonic welding parameters for copper to copper joints using design of experiments. Int J Adv Manuf Technol 51:163–171. doi: 10.1007/s00170-010-2627-1 CrossRefGoogle Scholar
  8. 8.
    Satpathy MP, Sahoo SK (2016) Parametric analysis on plastic deformation of materials during ultrasonic spot welding with different anvil geometries. Int. J. Manuf. Technol. Manag. (Peer-reviewed and accepted for publication)Google Scholar
  9. 9.
    Satpathy MP, Moharana BR, Dewangan S, Sahoo SK (2015) Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach. Eng Sci Technol an Int J 18:0–14. doi:  10.1016/j.jestch.2015.04.007
  10. 10.
    Seah KHW, Wong YS, Lee LC (1993) Design of tool holders for ultrasonic machining using FEM. J Mater Process Technol 37:801–816. doi: 10.1016/0924-0136(93)90138-V CrossRefGoogle Scholar
  11. 11.
    Wang D, Chuang W-Y, Hsu K, Pham H-T (2011) Design of a Bézier-profile horn for high displacement amplification. Ultrasonics 51:148–156. doi: 10.1016/j.ultras.2010.07.004 CrossRefGoogle Scholar
  12. 12.
    Satyanarayana A, Reddy BGK (1984) Design of velocity transformers for ultrasonic machining. Electr India 24:11–20Google Scholar
  13. 13.
    Alexandru, Nanu S, Niculae, Marinescu I (2011) Study on ultrasonic stepped horn geometry design and femsimulation. Nonconv Technol Rev 25–30.Google Scholar
  14. 14.
    Lin S (1996) Study on the longitudinal-torsional composite mode exponential ultrasonic horns. Ultrasonics 34:757–762CrossRefGoogle Scholar
  15. 15.
    Elangovan S, Anand K, Prakasan K (2012) Parametric optimization of ultrasonic metal welding using response surface methodology and genetic algorithm. Int J Adv Manuf Technol 63:561–572. doi: 10.1007/s00170-012-3920-y CrossRefGoogle Scholar
  16. 16.
    Roopa Rani M, Rudramoorthy R (2013) Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding. Ultrasonics 53:763–772. doi: 10.1016/j.ultras.2012.11.003 CrossRefGoogle Scholar
  17. 17.
    Nguyen H-T, Nguyen H-D, Uan J-Y, Wang D-A (2014) A nonrational B-spline profiled horn with high displacement amplification for ultrasonic welding. Ultrasonics 54:2063–2071. doi: 10.1016/j.ultras.2014.07.003 CrossRefGoogle Scholar
  18. 18.
    Sherrit S, Badescu M, Bao X et al (2004) Novel horn designs for power ultrasonics. Proc - IEEE Ultrason Symp 3:2263–2266. doi: 10.1109/ULTSYM.2004.1418291 Google Scholar
  19. 19.
    Amin SG, Ahmed MHM, Youssef HA (1995) Computer-aided design of acoustic horns for ultrasonic machining using finite-element analysis. J Mater Process Technol 55:254–260. doi: 10.1016/0924-0136(95)02015-2 CrossRefGoogle Scholar
  20. 20.
    ANSYS R (2007) 11.0 Documentation, SAS IP.Google Scholar
  21. 21.
    Shu K, Hsiang W, Chen CC (2010) The design of acoustic horns for ultrasonic insertion. J Chinese Soc Mech Eng 4:338–342Google Scholar
  22. 22.
    Woo J, Roh Y, Kang K, Lee S (2006) Design and construction of an acoustic horn for high power ultrasonic transducers. In: Ultrason. Symp. 2006. IEEE. pp 1922–1925.Google Scholar
  23. 23.
    Material property data. www.matweb.com. Accessed 6 Apr 2013
  24. 24.
    Kremer D, Saleh SM, Ghabrial SR, Moisan A (1981) The state of the art of ultrasonic machining. CIRP Ann Technol 30:107–110CrossRefGoogle Scholar
  25. 25.
    Stephens RI, Fatemi A, Stephens RR, Fuchs HO (2000) Metal fatigue in engineering. John Wiley & SonsGoogle Scholar
  26. 26.
    Military Handbook SF (1972) Metallic materials and elements for aerospace vehicle structures. Dep Defense, Washington DC (Nov 1990) 9–16.Google Scholar
  27. 27.
    Miner MA, others (1945) Cumulative damage in fatigue. J Appl Mech 12:159–164.Google Scholar
  28. 28.
    Dulieu-Barton JM (1999) Introduction to thermoelastic stress analysis. Strain 35:35–39CrossRefGoogle Scholar
  29. 29.
    Zhao YY, Li D, Zhang YS (2013) Effect of welding energy on interface zone of Al–Cu ultrasonic welded joint. Sci Technol Weld Join 18:354–360. doi: 10.1179/1362171813Y.0000000114 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringITS, IFHEHyderabadIndia
  2. 2.Department of Mechanical EngineeringN.I.T RourkelaOdishaIndia

Personalised recommendations