Advertisement

A highly efficient and convergent optimization method for multipoint tool orientation in five-axis machining

ORIGINAL ARTICLE
  • 102 Downloads

Abstract

In five-axis machining, multipoint tool orientation has the merit of getting a wider strip width. However, large computing time restricts its application. In this paper, for machining free-form surfaces by toroidal tools, a highly efficient and convergent multipoint tool orientation optimization method is proposed. The method is improved from Middle Point Error Control Method (MPECM), by changing the objective from the maximum strip width to multipoint tool orientation. H-function is defined, and the consistency between multipoint tool orientation and H-function’s zero is demonstrated. Based on that, the seeking for optimal tool orientation is equivalent to the computation of H-function’s zero. Under the same conditions, compared with MPECM and mechanical equilibrium method (MEM), the computing time of the proposed method decreases to 5% at least. Convergence is ensured by the analysis of the existence of multipoint tool orientation. In the end, the proposed method is validated in machining a mold surface and an aero-engine blade.

Keywords

Multipoint tool orientation Two contact points Wide strip width machining Tool orientation optimization Five-axis machining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lasemi A, Xue D, Gu P (2010) Recent development in CNC machining of freeform surfaces: a state-of-the-art review. Comput Aided Des 42(7):641–654CrossRefGoogle Scholar
  2. 2.
    Berend D, Anke T, Leif B, Thomas K (2012) Five-axis-grinding with toric tools: a status review. J Manuf Sci Eng 134(5):054001–054006CrossRefGoogle Scholar
  3. 3.
    Mi ZP, Yuan CM, Ma XH, Shen LY (2017) Tool orientation optimization for 5-axis machining with C-space method. Int J Adv Manuf Technol 88(5–8):1243–1255CrossRefGoogle Scholar
  4. 4.
    Zhu Y, Chen Z, Ning T (2016) Tool orientation optimization for 3+2-axis CNC machining of sculptured surface. Comput Aided Des 77:60–72CrossRefGoogle Scholar
  5. 5.
    Chu CH, Kuo CL (2016) Iterative optimization of tool path planning in 5-axis flank milling of ruled surfaces by integrating sampling techniques. Int J Adv Manuf Technol 87(5–8):2363–2374CrossRefGoogle Scholar
  6. 6.
    Wei WF, Zhang GP (2016) Tool path modeling and error sensitivity analysis of crankshaft pin CNC grinding. Int J Adv Manuf Technol 86(9–12):2485–2502CrossRefGoogle Scholar
  7. 7.
    Liang Y, Zhang D, Ren J (2016) Accessible regions of tool orientations in multi-axis milling of blisks with a ball-end mill. Int J Adv Manuf Technol 85(5–8):1887–1900CrossRefGoogle Scholar
  8. 8.
    Plakhotnik D, Lauwers B (2014) Graph-based optimization of five-axis machine tool movements by varying tool orientation. Int J Adv Manuf Technol 74(1–4):307–318CrossRefGoogle Scholar
  9. 9.
    Liang YS, Zhang DH, Chen ZZC, Ren JX, Li XY (2014) Tool orientation optimization and location determination for four-axis plunge milling of open blisks. Int J Adv Manuf Technol 70(9–12):2249–2261CrossRefGoogle Scholar
  10. 10.
    Fard M, Bordatchev V (2013) Experimental study of the effect of tool orientation in five-axis micro-milling of brass using ball-end mills. Int J Adv Manuf Technol 67(5–8):1079–1089CrossRefGoogle Scholar
  11. 11.
    Chen K (2011) Investigation of tool orientation for milling blade of impeller in five-axis machining. Int J Adv Manuf Technol 52(1–4):235–244CrossRefGoogle Scholar
  12. 12.
    Affouard A, Duc E, Lartigue C, LAngeron J-M, Bourdet P (2004) Avoiding 5-axis singularities using tool path deformation. Int J Mach Tools Manuf 44(4):415–425CrossRefGoogle Scholar
  13. 13.
    Pengbo B, Barton M, Plakhotnik D (2016) Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Comput Aided Des 79:1–11CrossRefGoogle Scholar
  14. 14.
    Liu Z, Lu H, Yu GM, Wang SJ (2016) A novel CNC machining method for enveloping surface. Int J Adv Manuf Technol 85(1–4):779–790CrossRefGoogle Scholar
  15. 15.
    Zhu LM, Zheng G, Ding H (2009) Formulating the swept envelope of rotary cutter undergoing general spatial motion for multi-axis NC machining. Int J Mach Tools Manuf 49(2):199–202CrossRefGoogle Scholar
  16. 16.
    Sylvain L, Tournier C, Lartigue C (2008) Optimization of 5-axis high-speed machining using a surface based approach. Comput Aided Des 40:1015–1023CrossRefGoogle Scholar
  17. 17.
    Chung Y, Park Jung W, Shin H, Choi K (1998) Modeling the surface swept by a generalized cutter for NC verification. Comput Aided Des 30:587–594CrossRefMATHGoogle Scholar
  18. 18.
    Wang XC, Ghosh SK, Li YB, Wu XT (1993) Curvature catering—a new approach in manufacture of sculptured surfaces (part 1. Theorem). J Mater Process Technol 38:159–175CrossRefGoogle Scholar
  19. 19.
    Gong H, Cao LX, Liu J (2008) Second order approximation of tool envelope surface for 5-axis machining with single point contact. Comput Aided Des 40(5):604–615CrossRefGoogle Scholar
  20. 20.
    Zheng G, Lu Y, Zhu L (2012) Interference-free tool positioning for five-axis sculptured surface machining using third-order point contact approach. J Shanghai Jiaotong University 42(2):172–177Google Scholar
  21. 21.
    Madhavulu G, Sunda S, Ahmed B (1996) CAD/CAM solutions for efficient machining of turbo machinery componts by Struz milling method[C]// Processing of the 1996 IEEEIECON 22nd international conference, Aug 5-10, 1996, Taipei, Taiwan, China 1490-1495Google Scholar
  22. 22.
    Rao N, Ismail F, Bedi S (1997) Tool path planning for five-axis machining using the principal axis method. Int J Mach Tools Manuf 37(7):1025–1040CrossRefGoogle Scholar
  23. 23.
    Gray P, Bedi S, Ismail F (2003) Rolling ball method for 5-axis surface machining. Comput Aided Des 35:347–357CrossRefGoogle Scholar
  24. 24.
    Paul J, Gray SB, Ismail F (2005) Arc-intersect method for 5-axis tool positioning. Comput Aided Des 37:663–674CrossRefGoogle Scholar
  25. 25.
    Damsohn H (1976) Five-axis NC milling. Dissertation, University of StuttgartGoogle Scholar
  26. 26.
    Warkentin A, Ismail F, Bedi S (1998) Intersection approach to multi-point machining of sculptured surfaces. Comput Aided Geom Des 15(6):567–584MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Warkentin A, Ismail F, Bedi S (2000) Multi-point tool positioning strategy for 5-axis machining of sculptured surface. Comput Aided Geom Des 17(1):83–100MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Warkentin A, Ismail F, Bedi S (2000) Comparison between multipoint and other 5-axis tool positioning strategies. Int J Mach Tools Manuf 40(2):185–208CrossRefGoogle Scholar
  29. 29.
    Kumar R, Bedi S, Batish A, Mann S (2014) A multipoint method for 5-axis machining of triangulated surface models. Comput Aided Des 52:17–26CrossRefGoogle Scholar
  30. 30.
    Kim YJ, Barton M, Elber G, Pottmann H (2015) Precise gouging-free tool orientations for 5-axis CNC machining. Comput Aided Des 58:220–229CrossRefGoogle Scholar
  31. 31.
    Ni Y, Ma D, Zhang H, Guo J (2001) Optimal orientation control for torus tool 5-axis sculptured surface NC machining. J Mech Eng 37(2):87–91CrossRefGoogle Scholar
  32. 32.
    Chen ZT, Yue Y, Xu RF (2011) A middle-point-error-control method in strip-width maximization-machining. J Mech Eng 47(1):117–123CrossRefGoogle Scholar
  33. 33.
    He Y, Chen ZT (2014) Optimising tool positioning for achieving multi-point contact based on symmetrical error distribution curve in sculptured surface machining. Int J Adv Manuf Technol 73(5–8):707–714CrossRefGoogle Scholar
  34. 34.
    Gan ZW, Chen ZT, Zhou M, Yang J, Li SS (2016) Optimal cutter orientation for five-axis machining based on mechanical equilibrium theory. Int J Adv Manuf Technol 84(5–8):989–999Google Scholar
  35. 35.
    Gan ZW, Chen ZT, Zhou M (2016) Approaching the characteristic curve of the cutter’s envelope based on a velocity field. Proc IMechE B J Eng Manuf. doi: 10.1177/0954405415616788
  36. 36.
    Yan QJ (2006) Numerical analysis [M], 3th edn. Beihang University Publishing House, Beijing, pp 5–7Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Zhitong Chen
    • 1
    • 2
  • Shanshan Li
    • 1
    • 2
  • Zhiwang Gan
    • 3
  • Yu Zhu
    • 1
    • 2
  1. 1.School of Mechanical Engineering and AutomationBeihang UniversityBeijingChina
  2. 2.Collaborative Innovation Center for Advanced Aero-EngineBeihang UniversityBeijingChina
  3. 3.Information Science Academy of China Electronics Technology Group CorporationBeijingChina

Personalised recommendations