Improving joint formation and tensile properties of friction stir welded ultra-thin Al/Mg alloy sheets using a pinless tool assisted by a stationary shoulder

ORIGINAL ARTICLE
  • 112 Downloads

Abstract

In order to reduce or eliminate pin adhesion, a self-designed pinless tool with six-groove on a rotational shoulder was proposed to friction stir weld 6061-T6 Al and AZ31B Mg alloys. The assisted stationary shoulder can successfully improve surface formation, accelerate mechanical mixing, broaden welding process parameter window, heighten welding depth, and reduce the intermetallic compound layer thickness. Under the welding parameters of 40 mm/min, 1200 rpm, and 0.3 mm offset to Mg, sound joint with small flashes, sufficient Al/Mg mixture, and welding depth of 1 mm was obtained using the pinless tool assisted by the stationary shoulder. The maximum tensile strength of Al/Mg joint by the stationary shoulder reaches 124.1 MPa, which is 121.6% of that by the pinless tool. Some dimples appear on the fracture surface of the top region, presenting the existence of ductile fracture. Therefore, the pinless tool assisted by the stationary shoulder is greatly suitable for the welding of ultra-thin sheets of Al/Mg alloys.

Keywords

Pinless friction stir welding Stationary shoulder Al/Mg alloys Pin adhesion Intermetallic compounds Mechanical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ji SD, Meng XC, Liu JG, Zhang LG, Gao SS (2014) Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy. Mater Des 62:113–117. doi: 10.1016/j.Matdes.2014.05.016 CrossRefGoogle Scholar
  2. 2.
    Liu DJ, Xin RL, Zheng X, Zhou Z, Liu Q (2013) Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60-AZ31. Mater Sci Eng A 561:419–426. doi: 10.1016/j.Msea.2012.10.052 CrossRefGoogle Scholar
  3. 3.
    Kwon YJ, Shigematsu I, Saito N (2008) Dissimilar friction stir welding between magnesium and aluminum alloys. Mater Lett 62(23):3827–3829. doi: 10.1016/j.Matlet.2008.04.080 CrossRefGoogle Scholar
  4. 4.
    Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50(1):1–78. doi: 10.1016/j.Mser.2005.07.001 CrossRefGoogle Scholar
  5. 5.
    Zhang ZH, Li WY, Feng Y, Li JL, Chao YJ (2015) Global anisotropic response of friction stir welded 2024 aluminum sheets. Acta Mater 92:117–125. doi: 10.1016/j.Actamat.2015.03.054 CrossRefGoogle Scholar
  6. 6.
    Wan L, Huang YX, Guo WQ, Lv SX, Feng JC (2014) Mechanical properties and microstructure of 6082-t6 aluminum alloy joints by self-support friction stir welding. J Mater Sci Technol 30(12):1243–1250. doi: 10.1016/j.Jmst.2014.04.009 CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Jiang S, Yang SF, Lu ZP, Yan K (2016) Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. Int J Adv Manuf Technol 83(1–4):673–679. doi: 10.1007/s00170-015-7624-y CrossRefGoogle Scholar
  8. 8.
    Mofid MA, Abdollah-Zadeh A, Gür CH (2014) Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen. Int J Adv Manuf Technol 71(5–8):1493–1499. doi: 10.1007/s00170-013-5565-x CrossRefGoogle Scholar
  9. 9.
    Strass B, Wagner G, Conrad C, Wolter B, Benfer S, Fürbeth W (2014) Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding-mechanical properties, microstructure and corrosion behavior. Adv Mater Res 966:521–535. doi: 10.4028/www.scientific.net/AMR.966-967.521 CrossRefGoogle Scholar
  10. 10.
    Ji SD, Huang RF, Meng XC, Zhang LG, Huang YX (2017) Enhancing friction stir weldability of 6061-T6 Al and AZ31B Mg alloys assisted by external non-rotational shoulder. J Mater Eng Perform 26:2359. doi: 10.1007/s11665-017-2640-8 CrossRefGoogle Scholar
  11. 11.
    Ji SD, Meng XC, Ma L, Gao SS (2016) Effect of groove distribution in shoulder on formation, macrostructures, and mechanical properties of pinless friction stir welding of 6061-O aluminum alloy. Int J Adv Manuf Technol 87(9–12):3051–3058. doi: 10.1007/s00170-016-8734-x CrossRefGoogle Scholar
  12. 12.
    Simoncini M, Forcellese A (2012) Effect of the welding parameters and tool configuration on micro-and macro-mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets. Mater Des 41:50–60. doi: 10.1016/j.Matdes.2012.04.057 CrossRefGoogle Scholar
  13. 13.
    Widener CA, Talia JE, Tweedy BM, Burford DA (2006) High-rotational speed friction stir welding with a fixed shoulder. 6th International Syposium on Friction Stir Welding, Montreal, Canada, S8B-P1Google Scholar
  14. 14.
    Li DX, Yang XQ, Cui L, He FZ, Zhang X (2015) Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651. J Mater Process Technol 222(2015):391–398. doi: 10.1016/j.jmatprotec.2015.03.036 CrossRefGoogle Scholar
  15. 15.
    Li JQ, Liu HJ (2013) Design of tool system for the external nonrotational shoulder assisted friction stir welding and its experimental validations on 2219-T6 aluminum alloy. Int J Adv Manuf Technol 66:623–634. doi: 10.1007/s00170-012-4353-3 CrossRefGoogle Scholar
  16. 16.
    GB/T 2650-2008/ISO 6-9016:2001, Tensile test method on welded joints, Standardization Administration of the People’s Republic of China, 2008Google Scholar
  17. 17.
    Zhao Y, Lu ZP, Yan K (2015) Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Mater Des 65:675–681. doi: 10.1016/j.Matdes.2014.09.046 CrossRefGoogle Scholar
  18. 18.
    Ji SD, Meng XC, Li ZW, Ma L, Gao SS (2016) Investigation of vertical compensation friction stir-welded 7N01-T4 aluminum alloy. Int J Adv Manuf Technol 84(9–12):2391–2399. doi: 10.1007/s00170-015-7904-6 CrossRefGoogle Scholar
  19. 19.
    Yan JC, Xu ZW, Li ZY, Lei L, Yang XQ (2005) Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring. Scr Mater 53(5):585–589. doi: 10.1016/j.Scriptamat.2005.04.022 CrossRefGoogle Scholar
  20. 20.
    Fu BL, Qin GL, Li F, Meng XM, Zhang JZ, Wu CS (2015) Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Process Technol 218:38–47. doi: 10.1016/j.Jmatprotec.2014.11.039 CrossRefGoogle Scholar
  21. 21.
    Choi DH, Ahn BW, Lee CY, Yeon YM, Song K, Jung SB (2011) Formation of intermetallic compounds in Al and Mg alloy interface during friction stir spot welding. Intermetallics 19(2):125–130. doi: 10.1016/j.Intermet.2010.08.030 CrossRefGoogle Scholar
  22. 22.
    Zhao LM, Zhang ZD (2008) Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg–Al joints. Scr Mater 58(4):283–286. doi: 10.1016/j.Scriptamat.2007.10.006 CrossRefGoogle Scholar
  23. 23.
    Venkateswaran P, Reynolds AP (2012) Factors affecting the properties of friction stir welds between aluminum and magnesium alloys. Mater Sci Eng A 545:26–37. doi: 10.1016/j.Msea.2012.02.069 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Aerospace EngineeringShenyang Aerospace UniversityShenyangPeople’s Republic of China
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations