Effect of stress distribution on springback in hydroforming process

  • Zhiying Sun
  • Lihui Lang


Stress of sheet metal forming was analyzed by using the Hill theory, and the moment formula about bending shallow part was derived in sheet hydroforming. The offset distance in the stamping direction is as the size of the springback. The formulas about springback solution were obtained under the action of hydraulic pressure during the stretch bending. According to the formula, with the liquid chamber pressure increased, the force T increased, the moment M decreased, and the springback decreased. The neutral layer of stress moved to the inside of the plate under fluid pressure, and the sections of sheet are mostly in a tensile stress state and less springback after the end of hydroforming. Combined with the results of theoretical analysis and numerical simulation, the experimental method of getting the springback about bending sheet under liquid pressure is proposed, and the 3D model was got by using reverse engineering. It got the springback by comparing the punch surfaces. The test results show that the smaller the springback, the greater the fluid pressure in the forming pressure range about stainless steel metal, which accords with the theory analysis.


Sheet Hydroforming Cavity pressure Springback Stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lang L, Li T, Zhou X, Danckert J, Nielsen KB (2007) The effect of the key process parameters in the innovative hydroforming on the formed parts. J Mater Process Technol 187-188:304–308. doi: 10.1016/j.jmatprotec.2006.11.196 CrossRefGoogle Scholar
  2. 2.
    Lang L, Li T, An D, Chi C, Nielsen KB, Danckert J (2009) Investigation into hydromechanical deep drawing of aluminum alloy—complicated components in aircraft manufacturing. Mater Sci Eng A 499:320–324. doi: 10.1016/j.msea.2007.11.126 CrossRefGoogle Scholar
  3. 3.
    Hama T, Kurisu K, Matsushima K, Fujimoto H, Takuda H (2009) Outflow characteristics of a pressure medium during sheet hydroforming. ISIJ Int 49:239–246. doi: 10.2355/isijinternational.49.239 CrossRefGoogle Scholar
  4. 4.
    Djavanroodi F, Derogar A (2010) Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater Des 31:4866–4875. doi: 10.1016/j.matdes.2010.05.030 CrossRefGoogle Scholar
  5. 5.
    Labergere C, Gelin JC (2012) Numerical simulation of sheet hydroforming taking into account analytical pressure and fluid flow. J Mater Process Technol 212:2020–2030. doi: 10.1016/j.jmatprotec.2012.05.002 CrossRefGoogle Scholar
  6. 6.
    Wang J, Yang C (2013) Failure analysis of hydroforming of sandwich panels. J Manuf Process 15:256–262. doi: 10.1016/j.jmapro.2013.01.008 CrossRefGoogle Scholar
  7. 7.
    El-Megharbel A, El-Domiaty A, Shaker M (1990) Springback and residual stresses after stretch bending of workhardening sheet metal. J Mater Process Technol 24:191–200CrossRefGoogle Scholar
  8. 8.
    Zhang QD, Lang LH, Wang Y, Sun ZY (2016) Theoretical investigation on the springback behavior of AA7B04 sheet in hydraulic bulge process. Int J Adv Manuf Technol 87:2861–2871CrossRefGoogle Scholar
  9. 9.
    Panthi SK, Ramakrishnan N, Ahmed M, Singh SS, Goel MD (2010) Finite element analysis of sheet metal bending process to predict the springback. Mater Des 31:657–662. doi: 10.1016/j.matdes.2009.08.022 CrossRefGoogle Scholar
  10. 10.
    Panthi SK, Ramakrishnan N, Pathak KK, Chouhan JS (2007) An analysis of springback in sheet metal bending using finite element method (FEM). J Mater Process Technol 186:120–124. doi: 10.1016/j.jmatprotec.2006.12.026 CrossRefGoogle Scholar
  11. 11.
    Wagoner RH, Li M (2007) Simulation of springback: through-thickness integration. Int J Plast 23:345–360. doi: 10.1016/j.ijplas.2006.04.005 CrossRefMATHGoogle Scholar
  12. 12.
    Huang Y, Leu D (1995) Finite element analysis of contact problems for a sheet metal bending process. Comput Struct 57:15–27. doi: 10.1016/0045-7949(94)00584-P CrossRefMATHGoogle Scholar
  13. 13.
    Huang Y, Leu D (1995) Elasto-plastic finite element analysis of sheet metal U-bending process. J Mater Process Technol 48:151–157. doi: 10.1016/0924-0136(94)01645-H CrossRefGoogle Scholar
  14. 14.
    Lajarin SF, Marcondes P (2013) Influence of computational parameters and nonlinear unloading behavior on springback simulation. J Braz Soc Mech Sci Eng 35:123–129CrossRefGoogle Scholar
  15. 15.
    Srinivasan R, Vasudevan D, Padmanabhan P (2014) Influence of friction parameters on springback and bend force in air bending of electrogalvanised steel sheet: an experimental study. J Braz Soc Mech Sci Eng 36:371–376CrossRefGoogle Scholar
  16. 16.
    Eggertsen PA, Mattiasson K (2009) On the modelling of the bending-unbending behaviour for accurate springback predictions. Int J Mech Sci 51:547–563. doi: 10.1016/j.ijmecsci.2009.05.007 CrossRefGoogle Scholar
  17. 17.
    Eggertsen PA, Mattiasson K (2010) On constitutive modeling for springback analysis. Int J Mech Sci 52:804–818. doi: 10.1016/j.ijmecsci.2010.01.008 CrossRefGoogle Scholar
  18. 18.
    Jiang HJ, Dai HL (2015) A novel model to predict U-bending springback and time-dependent springback for a HSLA steel plate. Int J Adv Manuf Technol 81:1055–1066CrossRefGoogle Scholar
  19. 19.
    Marretta L, Di Lorenzo R (2010) Influence of material properties variability on springback and thinning in sheet stamping processes: a stochastic analysis. Int J Adv Manuf Technol 51:117–134CrossRefGoogle Scholar
  20. 20.
    Fu ZM, Mo JH (2011) Springback prediction of high-strength sheet metal under air bending forming and tool design based on GA-BPNN. Int J Adv Manuf Technol 53:473–483CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationBeijing University of Aeronautics and AstronauticsBeijingChina

Personalised recommendations