Simulation analysis of ultrasonic detection for resistance spot welding based on COMSOL Multiphysics

ORIGINAL ARTICLE
  • 96 Downloads

Abstract

The simulated calculation is carried out on the ultrasonic detection process for stainless steel resistance spot welding by the finite element technology. It reveals the ultrasonic propagation characteristics and regularity in the inner of the spot welds, and provides a theoretical basis for selecting the Am as a characteristic parameter to represent the fusion state of the spot weld in the actual ultrasonic detection. Then the ultrasonic detection of spot welds with the presence of the porosity defect which easily appears is simulated, and the effect of the porosity on the ultrasonic propagation characteristics is studied. It is found that the ultrasonic reflection and transmission occur at the porosity defect, and finally the correctness and validity of the simulation and the model are verified by the experimental method.

Keywords

Simulation analysis Ultrasonic detection Resistance spot welding Porosity defect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Min J (2003) Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies. J Mater Process Technol 132(1–3):102–113. doi: 10.1016/S0924-0136(02)00409-0 Google Scholar
  2. 2.
    Bina MH, Jamali M, Shamanian M, Sabet H (2014) Investigation on the resistance spot-welded austenitic/ferritic stainless steel. Int J Adv Manuf Technol 75(9):1371–1379. doi: 10.1007/s00170-014-6220-x CrossRefGoogle Scholar
  3. 3.
    Podržaj P, Simončič S (2011) Resistance spot welding control based on fuzzy logic. Int J Adv Manuf Technol 52(9):959–967. doi: 10.1007/s00170-010-2794-0 CrossRefGoogle Scholar
  4. 4.
    Luo Y, Liu JH, Xu HB, Xiong CZ, Liu L (2009) Regression modeling and process analysis of resistance spot welding on galvanized steel sheet. Mater Des 30(7):2547–2555. doi: 10.1016/j.matdes.2008.09.031 CrossRefGoogle Scholar
  5. 5.
    Wan XD, Wang YX, Zhao DW (2016) Quality monitoring based on dynamic resistance and principal component analysis in small scale resistance spot welding process. Int J Adv Manuf Technol 86(9):3443–3451. doi: 10.1007/s00170-016-8374-1 CrossRefGoogle Scholar
  6. 6.
    Zhang HJ, Hou YY, Zhang JY, Qi XY, Wang FJ (2015) A new method for nondestructive quality evaluation of the resistance spot welding based on the radar chart method and the decision tree classifier. Int J Adv Manuf Technol 75(5):841–851. doi: 10.1007/s00170-014-6654-1 CrossRefGoogle Scholar
  7. 7.
    Ruisz J, Biber J, Loipetsberger M (2007) Quality evaluation in resistance spot welding by analysing the weld fingerprint on metal bands by computer vision. Int J Adv Manuf Technol 33(9):952–960. doi: 10.1007/s00170-006-0522-6 CrossRefGoogle Scholar
  8. 8.
    Chertov AM, Maev RG, Severin FM (2007) Acoustic microscopy of internal structure of resistance spot welds. IEEE T Ultrason Ferr 54(8):1521–1529. doi: 10.1109/TUFFC.2007.422 CrossRefGoogle Scholar
  9. 9.
    Moghanizadeh A (2016) Evaluation of the physical properties of spot welding using ultrasonic testing[J]. Int J Adv Manuf Technol 85(1):535–545CrossRefGoogle Scholar
  10. 10.
    El-Banna M, Filev D, Chinnam RB (2008) Online qualitative nugget classification by using a linear vector quantization neural network for resistance spot welding. Int J Adv Manuf Technol 36(3):237–248. doi: 10.1007/s00170-006-0835-5 CrossRefGoogle Scholar
  11. 11.
    Liu J, Xu GC, Ren L, Qian ZH, Ren LQ (2016) Defect intelligent identification in resistance spot welding ultrasonic detection based on wavelet packet and neural network. Int J Adv Manuf Technol 90(9):2581–2588. doi: 10.1007/s00170-016-9588-y Google Scholar
  12. 12.
    Declercq NF, Degrieck J, Leroy O (2006) Ultrasonic polar scans: numerical simulation on generally anisotropic media. Ultrasonics 45:32–39. doi: 10.1016/j.ultras.2006.05.219 CrossRefGoogle Scholar
  13. 13.
    Javadi Y, Akhlaghi M, Najafabadi MA (2013) Using finite element and ultrasonic method to evaluate welding longitudinal residual stress through the thickness in austenitic stainless steel plates. Mater Des 45:628–642. doi: 10.1016/j.matdes.2012.09.038 CrossRefGoogle Scholar
  14. 14.
    Ben BS, Yang SH, Ratnam C, Ben A (2013) Ultrasonic based structural damage detection using combined finite element and model Lamb wave propagation parameters in composite materials. Int J Adv Manuf Technol 67(5):1847–1856. doi: 10.1007/s00170-012-4613-2 CrossRefGoogle Scholar
  15. 15.
    Ke W, Castaings M, Bacon C (2009) 3D finite element simulations of an air-coupled ultrasonic NDT system. NDT & Int 42(6):524–533. doi: 10.1016/j.ndteint.2009.03.002 CrossRefGoogle Scholar
  16. 16.
    Song YK, Hua L, Wang XK, Wang B, Liu YL (2016) Reasearch on the detection model and method for evaluating spot welding quality based on ultrasonic A-scan analysis. J Nondestruct Eval 35(1):1–12. doi: 10.1007/s10921-015-0319-3 CrossRefGoogle Scholar
  17. 17.
    Baskaran G, Rao CL, Balasubramaniam K (2007) Simulation of the TOFD technique using the finite element method. Insight 49(11):641–646. doi: 10.1784/insi.2007.49.11.641 CrossRefGoogle Scholar
  18. 18.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:229–256. doi: 10.1002/nme.1620370205 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Liu J, Xu GC, Gu XP, Zhou GH, Hao YK (2014) Ultrasonic C-scan detection for stainless steel spot welds based on signal analysis in frequency domain. ISIJ Int 54(8):1876–1882. doi: 10.2355/isijinternational.54.1876 CrossRefGoogle Scholar
  20. 20.
    Fujita MM, Ueno MM, Iwamoto C, Satonaka S (2013) Ultrasonic evaluation of spot welding nugget diameter with a line-focused probe. Weld World 53(11):281–289. doi: 10.1007/BF03263471 Google Scholar
  21. 21.
    Thornton M, Han L, Shergold M (2012) Progress in NDT of resistance spot welding of aluminium using ultrasonic C-scan. NDT & Int 48(2):30–38. doi: 10.1016/j.ndteint.2012.02.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Key Laboratory of Bionic Engineering, Ministry of EducationJilin UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Automobile Materials of Ministry of Education and Department of Materials Science & EngineeringJilin UniversityChangchunPeople’s Republic of China
  3. 3.School of Mechanical, Aerospace and Civil EngineeringUniversity of ManchesterManchesterUK

Personalised recommendations