Three-dimensional numerical simulation for drilling of 2.5D carbon/carbon composites

ORIGINAL ARTICLE

Abstract

Drilling of carbon/carbon (C/C) composites is difficult to implement due to the materials’ high specific stiffness, brittleness, anisotropic, heterogeneous, and low thermal conductivity, resulting in tear, burr, poor surface quality, and rapid wear of cutters. Accurate and fast predictions of thrust forces and defects are important for C/C composites drilling process with high quality. In this paper, a finite element analysis method for drilling of 2.5D C/C composites is presented. An improved damage initiation model is proposed based on the Shokrieh-Lessard’s model and the Hashin’s failure criteria. Six different failure modes—X-direction fiber-matrix tension, X-direction fiber-matrix compression, Y-direction tension, Y-direction compression, normal tension, and normal compression—are considered and modeled separately. An improved 3D progressive failure model is developed to approximate real failure process of 2.5D C/C composites. For validation purpose, drilling tests have been performed and compared to the results of finite element analysis. The experimental result shows to be consistent well with the proposed model, yielding a relative difference of predicted thrust force from 8.07 to 13.86%. The model demonstrates its ability to predict thrust force, material failure process, and damage for different values of feedrate.

Keywords

C/C composites Thrust force Drilling Finite element analysis Progressive failure model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christ K, Hüttinger K (1993) Carbon-fiber-reinforced carbon composites fabricated with mesophase pitch. Carbon 31(5):731–750CrossRefGoogle Scholar
  2. 2.
    Savage G (1993) Applications of Carbon-carbon composites. SpringerGoogle Scholar
  3. 3.
    Buckley JD (1988) Carbon-carbon-an overviewGoogle Scholar
  4. 4.
    Windhorst T, Blount G (1997) Carbon-carbon composites: a summary of recent developments and applications. Mater Des 18(1):11–15. doi: 10.1016/S0261-3069(97)00024-1 CrossRefGoogle Scholar
  5. 5.
    Shan C, Wang X, Yang X, Lyu X (2016) Prediction of cutting forces in ball-end milling of 2.5D C/C composites. Chin J Aeronaut 29(3):824–830. doi: 10.1016/j.cja.2015.12.015 CrossRefGoogle Scholar
  6. 6.
    George PM, Raghunath BK, Manocha LM, Warrier AM (2004) EDM machining of carbon–carbon composite—a Taguchi approach. J Mater Process Technol 145(1):66–71. doi: 10.1016/S0924-0136(03)00863-X CrossRefGoogle Scholar
  7. 7.
    Hocheng H, Guu YH, Tai NH (1998) The feasibility analysis of electrical-discharge machining of carbon-carbon composites. Mater Manuf Process 13(1):117–132. doi: 10.1080/10426919808935223 CrossRefGoogle Scholar
  8. 8.
    Kim D, Ramulu M (2004) Drilling process optimization for graphite/bismaleimide–titanium alloy stacks. Compos Struct 63(1):101–114. doi: 10.1016/S0263-8223(03)00137-5 CrossRefGoogle Scholar
  9. 9.
    Singh I, Bhatnagar N (2006) Drilling-induced damage in uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates. Int J Adv Manuf Technol 27(9):877–882. doi: 10.1007/s00170-004-2282-5 CrossRefGoogle Scholar
  10. 10.
    Ferreira J, Coppini N, Neto FL (2001) Characteristics of carbon–carbon composite turning. J Mater Process Technol 109(1):65–71CrossRefGoogle Scholar
  11. 11.
    Li ZD, Zhao B, Tong JL, Duan P (2014) Study of carbon/carbon composite material surface morphology on ultrasonic vibration assisted milling. Key Eng Mater 579:181–185CrossRefGoogle Scholar
  12. 12.
    Shan C, Lin X, Wang X, Yan J, Cui D (2015) Defect analysis in drilling needle-punched carbon–carbon composites perpendicular to nonwoven fabrics. Adv Mech Eng 7(8):1–11. doi: 10.1177/1687814015598494 CrossRefGoogle Scholar
  13. 13.
    Krishnaraj V, Zitoune R, Davim JP (2013) Drilling of polymer-matrix composites. Springer, HeidelbergCrossRefGoogle Scholar
  14. 14.
    Abrao A, Rubio JC, Faria P, Davim JP (2008) The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Mater Des 29(2):508–513CrossRefGoogle Scholar
  15. 15.
    Rubio JC, Abrao A, Faria P, Correia AE, Davim JP (2008) Effects of high speed in the drilling of glass fibre reinforced plastic: evaluation of the delamination factor. Int J Mach Tools Manuf 48(6):715–720CrossRefGoogle Scholar
  16. 16.
    Davim JP, Rubio JC, Abrao A (2007) A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates. Compos Sci Technol 67(9):1939–1945CrossRefGoogle Scholar
  17. 17.
    Gaitonde V, Karnik S, Rubio JC, Correia AE, Abrao A, Davim JP (2008) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 203(1):431–438CrossRefGoogle Scholar
  18. 18.
    Singh I, Bhatnagar N (2006) Drilling of uni-directional glass fiber reinforced plastic (UD-GFRP) composite laminates. Int J Adv Manuf Technol 27(9):870–876. doi: 10.1007/s00170-004-2280-7 CrossRefGoogle Scholar
  19. 19.
    Feito N, Diaz-Álvarez J, López-Puente J, Miguelez MH (2016) Numerical analysis of the influence of tool wear and special cutting geometry when drilling woven CFRPs. Compos Struct 138:285–294. doi: 10.1016/j.compstruct.2015.11.065 CrossRefGoogle Scholar
  20. 20.
    Davim JP (2009) Drilling of composite materials. NOVA Publishers, New YorkGoogle Scholar
  21. 21.
    Dandekar CR, Shin YC (2012) Modeling of machining of composite materials: a review. Int J Mach Tools Manuf 57:102–121. doi: 10.1016/j.ijmachtools.2012.01.006 CrossRefGoogle Scholar
  22. 22.
    Liu D, Tang Y, Cong WL (2012) A review of mechanical drilling for composite laminates. Compos Struct 94(4):1265–1279. doi: 10.1016/j.compstruct.2011.11.024 CrossRefGoogle Scholar
  23. 23.
    Bandhu D, Sangwan SS, Verma M (2014) A review of drilling of carbon fiber reinforced plastic composite materials. Int J Curr Eng Technol 14(3):1749–1752Google Scholar
  24. 24.
    Arola D, Ramulu M (1997) Orthogonal cutting of fiber-reinforced composites: a finite element analysis. Int J Mech Sci 39(5):597–613. doi: 10.1016/S0020-7403(96)00061-6 CrossRefMATHGoogle Scholar
  25. 25.
    Santiuste C, Soldani X, Miguélez MH (2010) Machining FEM model of long fiber composites for aeronautical components. Compos Struct 92(3):691–698. doi: 10.1016/j.compstruct.2009.09.021 CrossRefGoogle Scholar
  26. 26.
    Soldani X, Santiuste C, Muñoz-Sánchez A, Miguélez MH (2011) Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Compos Part A 42(9):1205–1216. doi: 10.1016/j.compositesa.2011.04.023 CrossRefGoogle Scholar
  27. 27.
    Santiuste C, Olmedo A, Soldani X, Miguélez H (2012) Delamination prediction in orthogonal machining of carbon long fiber-reinforced polymer composites. J Reinf Plast Compos 31(13):875–885CrossRefGoogle Scholar
  28. 28.
    Zitoune R, Collombet F (2007) Numerical prediction of the thrust force responsible of delamination during the drilling of the long-fibre composite structures. Compos Part A 38(3):858–866. doi: 10.1016/j.compositesa.2006.07.009 CrossRefGoogle Scholar
  29. 29.
    Durão LMP, de Moura MFSF, Marques AT (2008) Numerical prediction of delamination onset in carbon/epoxy composites drilling. Eng Fract Mech 75(9):2767–2778. doi: 10.1016/j.engfracmech.2007.03.009 CrossRefGoogle Scholar
  30. 30.
    Isbilir O, Ghassemieh E (2012) Finite element analysis of Drilling of carbon fibre reinforced composites. Appl Compos Mater 19(3):637–656. doi: 10.1007/s10443-011-9224-9 CrossRefGoogle Scholar
  31. 31.
    Hashin Z (1981) Fatigue failure criteria for unidirectional fiber composites. J Appl Mech 48(4):846–852. doi: 10.1115/1.3157744 CrossRefMATHGoogle Scholar
  32. 32.
    Isbilir O, Ghassemieh E (2013) Numerical investigation of the effects of drill geometry on drilling induced delamination of carbon fiber reinforced composites. Compos Struct 105:126–133. doi: 10.1016/j.compstruct.2013.04.026 CrossRefGoogle Scholar
  33. 33.
    Phadnis VA, Makhdum F, Roy A, Silberschmidt VV (2013) Drilling in carbon/epoxy composites: experimental investigations and finite element implementation. Compos Part A 47:41–51. doi: 10.1016/j.compositesa.2012.11.020 CrossRefGoogle Scholar
  34. 34.
    Puck A, Schürmann H (1998) Failure analysis of FRP laminates by means of physically based phenomenologicaL Models1. Compos Sci Technol 58(7):1045–1067. doi: 10.1016/S0266-3538(96)00140-6 CrossRefGoogle Scholar
  35. 35.
    Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modelling incorporating failure. Compos Struct 86(1–3):194–210. doi: 10.1016/j.compstruct.2008.03.007 CrossRefGoogle Scholar
  36. 36.
    Shokrieh MM, Lessard LB (2000) Progressive fatigue damage modeling of composite materials, part I: modeling. J Compos Mater 34(13):1056–1080. doi: 10.1177/002199830003401301 CrossRefGoogle Scholar
  37. 37.
    Kachanov L (2013) Introduction to continuum damage mechanics, vol 10. Springer Science & Business MediaGoogle Scholar
  38. 38.
    Falzon BG, Apruzzese P (2011) Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation. Compos Struct 93(2):1039–1046. doi: 10.1016/j.compstruct.2010.06.028 CrossRefGoogle Scholar
  39. 39.
    Lapczyk I, Hurtado JA (2007) Progressive damage modeling in fiber-reinforced materials. Compos Part A 38(11):2333–2341. doi: 10.1016/j.compositesa.2007.01.017 CrossRefGoogle Scholar
  40. 40.
    Qinlu Y, Yulong L, Hejun L, Shuping L, Lingjun G (2008) Quasi-static and dynamic compressive fracture behavior of carbon/carbon composites. Carbon 46(4):699–703. doi: 10.1016/j.carbon.2008.01.031 CrossRefGoogle Scholar
  41. 41.
    Falzon BG, Apruzzese P (2011) Numerical analysis of intralaminar failure mechanisms in composite structures. Part II: applications. Compos Struct 93(2):1047–1053. doi: 10.1016/j.compstruct.2010.06.022 CrossRefGoogle Scholar
  42. 42.
    Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mater Constr 16(3):155–177. doi: 10.1007/bf02486267 CrossRefGoogle Scholar
  43. 43.
    Klinkova O, Rech J, Drapier S, Bergheau J-M (2011) Characterization of friction properties at the workmaterial/cutting tool interface during the machining of randomly structured carbon fibers reinforced polymer with carbide tools under dry conditions. Tribol Int 44(12):2050–2058. doi: 10.1016/j.triboint.2011.09.006 CrossRefGoogle Scholar
  44. 44.
    Davim JP (2009) Machining composite materials. NOVA Publishers, LondonGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Chenwei Shan
    • 1
  • Jie Dang
    • 1
  • Jiaqiang Yan
    • 1
  • Xu Zhang
    • 1
  1. 1.Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of EducationNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations