A new error compensation model for machining process based on differential motion vectors

  • Fuyong Yang
  • Sun Jin
  • Zhimin Li
  • Siyi Ding
  • Xun Ma


The product variation in a machining process is mainly affected by datum error, fixture error, and machine tool path error. In spite of the success of equivalent fixture error approach to compensating datum error and machine tool path error, the machining-induced errors have not been explicitly modeled and compensated by the current compensation model based on equivalent fixture error. This will limit its application in compensation accuracy. This paper formulates a new error compensation model for machining process using equivalent fixture error concept based on differential motion vectors. With this model, datum error and machining-induced errors can be transformed to equivalent fixture locator errors and then compensated. A real cutting experiment and an error compensation simulation for machining process will be conducted in the case study to demonstrate the model validity.


Error compensation Equivalent fixture error Machining-induced errors Differential motion vectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang H, Huang Q (2006) Error cancellation modeling and its application to machining process control. IIE Trans 38(4):355–364CrossRefGoogle Scholar
  2. 2.
    Fuh J, Chang C, Melkanoff M (1993) An integrated fixture planning and analysis system for machining processes. Robot Comput Integr Manuf 10(5):339–353CrossRefGoogle Scholar
  3. 3.
    Cai W, Hu SJ, Yuan J (1997) A variational method of robust fixture configuration design for 3-D workpieces. J Manuf Sci Eng 119:593–602CrossRefGoogle Scholar
  4. 4.
    Kreng VB, Liu CR, Chu CN (1994) A kinematic model for machine tool accuracy characterization. Int J Adv Manuf Technol 9:79–86CrossRefGoogle Scholar
  5. 5.
    Lee ES, Suh SH, Shon JW (1998) A comprehensive method for calibration of volumetric positioning accuracy of CNC-machines. Int J Adv Manuf Technol 14:43–49CrossRefGoogle Scholar
  6. 6.
    Lee JH, Yang SH (2002) Statistical optimization and assessment of a thermal error model for CNC machine tools. Int J Mach Tools Manuf 42(1):147–155CrossRefGoogle Scholar
  7. 7.
    Zhou S, Huang Q, Shi J (2003) State space modeling of dimensional variation propagation in multistage machining process using differential motion vectors. IEEE Trans Robot Autom 19(2):296–309CrossRefGoogle Scholar
  8. 8.
    Huang Q, Zhou N, Shi J (2000) Stream of variation modeling and diagnosis of multi-station machining processes In: Proceedings of IMECE, International Mechanical Engineering Congress & Exposition 11:81–88Google Scholar
  9. 9.
    Djurdjanovic D, Ni J (2001) Linear state space modeling of dimensional machining errors. Trans NAMRI/SME, pp541–548Google Scholar
  10. 10.
    Abellan-Nebot JV, Liu J, Romero F (2012) State space modeling of variation propagation in multistation machining processes considering machining-induced variations. J Manuf Sci Eng-Trans ASME 134(2):1–13CrossRefGoogle Scholar
  11. 11.
    Loose JP, Zhou S, Ceglarek D (2007) Kinematic analysis of dimensional variation propagation for multistage machining processes with general fixture layouts. IEEE Trans Autom Sci Eng 4:141–152CrossRefGoogle Scholar
  12. 12.
    Liu J (2010) Variation reduction for multistage manufacturing processes: a comparison survey of statistical-process-control vs stream-of-variation methodologies. Qual Reliab Eng Int 26:645–661CrossRefGoogle Scholar
  13. 13.
    Shi J, Zhou S (2009) Quality control and improvement for multistage systems: a survey. IIE Trans 41:744–753CrossRefGoogle Scholar
  14. 14.
    Abellan-Nebot JV, Subirón FR, Mira JS (2013) Manufacturing variation models in multi-station machining systems. Int J Adv Manuf Technol 64:63–83CrossRefGoogle Scholar
  15. 15.
    Yang F, Jin S, Li Z (2017) A comprehensive study of linear variation propagation modeling methods for multistage machining processes. Int J Adv Manuf Technol 90(5):2139–2151. doi: 10.1007/s00170-016-9490-7 CrossRefGoogle Scholar
  16. 16.
    Liu J, Shi J, Hu SJ (2009) Quality-assured setup planning based on the stream-of-variation model for multi-stage machining processes. IIE Trans 41(4):323–334CrossRefGoogle Scholar
  17. 17.
    Zhang M, Djurdjanovic D, Ni J (2007) Diagnosibility and sensitivity analysis for multi-station machining processes. Int J Mach Tools Manuf 47:646–657CrossRefGoogle Scholar
  18. 18.
    Wang H, Huang Q, Katz R (2005) Multi-operational machining processes modeling for sequential root cause identification and measurement reduction. Trans ASME J Manuf Sci Eng 127:512–521CrossRefGoogle Scholar
  19. 19.
    Djurdjanovic D, Ni J (2003) Bayesian approach to measurement scheme analysis in multistation machining systems. Proc Inst Mech Eng B J Eng Manuf 217:1117–1130CrossRefGoogle Scholar
  20. 20.
    Djurdjanovic D, Ni J (2004) Measurement scheme synthesis in multi-station machining systems. J Manuf Sci Eng 126:178–188CrossRefGoogle Scholar
  21. 21.
    Djurdjanovic D, Ni J (2006) Stream-of-variation (SoV)-based measurement scheme analysis in multistation machining systems. IEEE Trans Autom Sci Eng 3:407–422CrossRefGoogle Scholar
  22. 22.
    Qin Y, Zhao L, Yao Y, Xu D (2011) Multistage machining processes variation propagation analysis based on machining processes weighted network performance. Int J Adv Manuf Technol 55(5):487–499CrossRefGoogle Scholar
  23. 23.
    Abellan-Nebot JV, Liu J, Subiron FR (2013) Process-oriented tolerancing using the extended stream of variation model. Comput Ind 6:485–498CrossRefGoogle Scholar
  24. 24.
    Jiao Y, Djurdjanovic D (2010) Joint allocation of measurement points and controllable tooling machines in multistage manufacturing processes. IIE Trans 42:703–720CrossRefGoogle Scholar
  25. 25.
    Abellan-Nebot JV, Liu J, Subiron FR (2012) Quality prediction and compensation in multi-station machining processes using sensor-based fixtures. Robot Comput-Integr Manuf 28:208–219CrossRefGoogle Scholar
  26. 26.
    Zuo X, Li B, Yang J, Jiang X (2013) Application of the Jacobian-torsor theory into error propagation analysis for machining processes. Int J Adv Manuf Technol 69:1557–1568CrossRefGoogle Scholar
  27. 27.
    Du S, Yao X, Huang D, Wang M (2015) Three-dimensional variation propagation modeling for multistage turning process of rotary workpieces. Comput Ind Eng 82(C):41–53CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Key Laboratory of Digital Manufacture for Thin-walled StructuresShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations