Research on machining quality control in micro milling of low-rigidity characteristics

  • Shoufeng Gao
  • Li Jiao
  • Pei Yan
  • Siqin Pang
  • Zhenxin Peng
  • Xuechun Shi
  • Zhao Wang
  • Xibin Wang


Micro cutting is widely used in the machining of micro components and micro features of conventional size components. During the micro cutting process, the manufactured components and characteristics usually belong to mesoscale, and the final geometric accuracy and surface quality are affected by many factors. In this paper, a series of micro milling tests based on heat-resistant stainless steel (12Cr18Ni9) are carried out to figure out the influence of different factors on machining quality of mesoscale low-rigidity characteristics. During the study, the small displacement torsors (SDT) theory are employed to characterize the perpendicularity tolerance of mesoscale surface. Optical microscopic measurement method is used to obtain SDT parameters, then the width of the tolerance zone is obtained; based on which, the effect of different factors on machining quality is systematically studied. In addition, the surface roughness and micro topography of the machined surface are also analyzed, and the phenomenon of surface deterioration caused by high-temperature chip is effectively controlled. Finally, a general method for ensuring the processing quality of mesoscale low-rigidity characteristics is proposed.


Micro cutting Small displacement torsors (SDT) Mesoscale Size effect Processing quality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aamer JM, Nicholas D, Paul TM (2011) Chip formation in microscale milling and correlation with acoustic emission signal. Int J Adv Manuf Technol 556:63–78Google Scholar
  2. 2.
    Jaffery SHI, Khan M, Ali L, Mativenga PT (2015) Statistical analysis of process parameters in micromachining of Ti-6Al-4V alloy. Proc IMechE B J Eng Manuf:1–18Google Scholar
  3. 3.
    Chae J, Park SS, Freiheit T (2006) Investigation of micro cutting operations. Inter J Mach Tools and Manuf 46(3–4):313–332CrossRefGoogle Scholar
  4. 4.
    Ikawa N, Shimada S, Tanaka H (1992) Minimum thickness of cut in micromachining. Nanotechnol 3:6–9CrossRefGoogle Scholar
  5. 5.
    Lucca DA, Rhorer RL, Komanduri R (1993) Effect of tool edge geometry on energy dissipation in ultra precision machining. Ann CIRP 42(1):83–86CrossRefGoogle Scholar
  6. 6.
    Shaw MC (1995) Precision finishing. Ann CIRP 44(1):343–348CrossRefGoogle Scholar
  7. 7.
    Liu X, DeVor RE, Kapoor SG, Ehmann KF (2004) The mechanics of machining at the microscale: assessment of the current state of the science. J Manuf Sci Eng Trans ASME 126(4):666–678CrossRefGoogle Scholar
  8. 8.
    Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. Ann CIRP 55(2):745–768CrossRefGoogle Scholar
  9. 9.
    Bissacco G, Hansen H, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. CIRP Ann Manuf Technol 57:113–116CrossRefGoogle Scholar
  10. 10.
    Bao WY, Tansel IN (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173CrossRefGoogle Scholar
  11. 11.
    Vogler M, DeVor R, Kapoor S (2004) On the modeling and analysis of machining performance in micro-endmilling, part I: surface generation. ASME J Manuf Sci Eng 126:684–693Google Scholar
  12. 12.
    Vogler MP, Liu X, Kapoor SG, DeVor RE, Ehmann KF (2002) Development of mesoscale machine tool (mMT) systems. Trans North Am Manuf Res Inst:653–661Google Scholar
  13. 13.
    Li H, Lai X, Li C, Feng J, Ni J (2008) Modelling and experimental analysis of the effects of tool wear, minimum chip thickness and micro tool geometry on the surface roughness in micro-end-milling. J Micromechanics Microeng 18(2):1–12CrossRefGoogle Scholar
  14. 14.
    Lai XM, Li HT, Li CF (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14CrossRefGoogle Scholar
  15. 15.
    Liu K, Melkote SN (2006) Effect of plastic side flow on surface roughness in micro-turning process. Int J Mach Tools Manuf 46(14):1778–1785CrossRefGoogle Scholar
  16. 16.
    Zhang T, Liu ZQ, Shi ZY, Xu CH (2013) Size effect on surface roughness in micro turning. Int J Precis Eng Manuf 14:345–349CrossRefGoogle Scholar
  17. 17.
    Chen P-C, Pan C-W, Lee W-C, Li K-M (2014) An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. Int J Adv Manuf Technol 71:1623–1630CrossRefGoogle Scholar
  18. 18.
    Vazquez E, Rodriguez C, Zuniga AZ, Ciurana J (2010) An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling. Int J Adv Manuf Technol 51:945CrossRefGoogle Scholar
  19. 19.
    Annoni M, Rebaioli L, Semeraro Q (2015) Thin wall geometrical quality improvement in micromilling. Int J Adv Manuf Technol 79(5–8):1–15Google Scholar
  20. 20.
    Ratchev S, Liu S, Huang W, Becker AA (2004) Milling error prediction and compensation in machining of low-rigidity parts. Int J Mach Tools Manuf 44(15):1629–1641CrossRefGoogle Scholar
  21. 21.
    Wade OR (1967) Tolerance control in design and manufacturing. Industrial Press, New YorkGoogle Scholar
  22. 22.
    Huang Q, Shi JJ (2003) Part dimensional error and its propagation modeling in multi-operational machining processes. J Manuf Sci Eng Trans ASME 125:255–262CrossRefGoogle Scholar
  23. 23.
    Bourdet P, Ballot E (1995) Équations formelles et tridimensionnelles des chaînes de dimensions dans les mécanismes. In: Proceedings of the 4th CIRP Seminar on Computer Aided Tolerancing, University of Tokyo, Tokyo, Japan, 5–6 April 1995Google Scholar
  24. 24.
    Bourdet P, Mathieu L, Lartigue C et al (1996) The concept of the small displacement torsors in metrology. In: Ciarlini P, Cox MG (eds) Advanced mathematical tools in metrology II. World Scientific, Hackensack, NJ, pp 10–122Google Scholar
  25. 25.
    Abellán-Nebot JV, Subirón FR, Mira JS (2012) Manufacturing variation models in multi-station machining systems. Int J Adv Manuf Technol 64:63–83CrossRefGoogle Scholar
  26. 26.
    Villeneuve F, Legoff O, Landon Y (2001) Tolerancing for manufacturing a three-dimensional model. Int J Prod Res 39(8):1625–1648CrossRefMATHGoogle Scholar
  27. 27.
    Vignat F, Villeneuve F (2003) 3D transfer of tolerances using a SDT approach: application to turning process. J Comput Inf Sci Eng 3:45–53CrossRefGoogle Scholar
  28. 28.
    Villeneuve F, Vignat F (2005) Manufacturing process simulation for tolerance analysis and synthesis. In: Bramley A, Brissaud D et al (eds) Advances in integrated design and manufacturing in mechanical engineering. Presented at the 5th International Conference on Integrated Design and Manufacturing in Mechanical Engineering, Bath, England, pp. 189–200Google Scholar
  29. 29.
    Laifa M, Sai WB, Hbaieb M (2014) Evaluation of machining process by integrating 3d manufacturing dispersions, functional constraints, and the concept of small displacement torsors. Int J Adv Manuf Technol 71(5–8):1327–1336CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Shoufeng Gao
    • 1
  • Li Jiao
    • 2
  • Pei Yan
    • 2
  • Siqin Pang
    • 2
  • Zhenxin Peng
    • 1
  • Xuechun Shi
    • 1
  • Zhao Wang
    • 1
  • Xibin Wang
    • 2
  1. 1.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Key Laboratory of Fundamental Science for Advanced MachiningBeijing Institute of TechnologyBeijingChina

Personalised recommendations