Electrochemical machining for micro holes with high aspect ratio on metal alloys using three-electrode PPS in neutral salt solution

  • Quan Cun Kong
  • Yong Li
  • Guo Dong Liu
  • Chao Jiang Li
  • Hao Tong
  • Wei Min Gan


To get micro holes with high aspect ratio on metal alloys by electrochemical machining (ECM) process, the mutual restricted problems between machining localization and efficiency are researched. By analyzing the thickening process of passive film, the mechanism of gas inhibition and dissolution promotion (GIDP) is explored. Thereby, a three-electrode pulse power supply (PPS) is designed to acidize on the workpiece/solution interface, for both better machining localization and efficiency. Micro ECM experiments, using the three-electrode PPS in neutral salt solution as electrolyte, are carried out on 304 stainless steel and 18CrNi8 alloy, in which a micro hollow electrode is used to flush electrolyte under high-pressure supply. It is found that the material removal rate (MRR) is increased by at least 80% and surface roughness R a is dropped by 40%, compared to those of two-electrode PPS. Micro array holes with diameter of about 175 μm are machined through metallic plates with thickness of 0.5 and 1.1 mm respectively. The micro array holes obtained have high consistent precision, good surface quality, and aspect ratio up to 6.5. Experimental results show the feasibility of micro ECM techniques proposed for micro hole with high aspect ratio.


Electrochemical machining (ECM) Gas inhibition and dissolution promotion (GIDP) Three-electrode pulse power supply (PPS) Micro holes High aspect ratio Electrolyte Metal alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Som S, Ramirez AI, Douglas E, Aggarwal SK (2011) Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel 90:1267–1276. doi: 10.1016/j.fuel.2010.10.048 CrossRefGoogle Scholar
  2. 2.
    Wang AC, Yan BH, Tang YX, Huang FY (2005) The feasibility study on a fabricated micro slit die using micro EDM. Int J Adv Manuf Technol 25:10–16. doi: 10.1007/s00170-003-1831-7 CrossRefGoogle Scholar
  3. 3.
    Tong H, Li Y, Zhang L, Li B (2013) Mechanism design and process control of micro EDM for drilling spray holes of diesel injector nozzles. Precis Eng 37:213–221. doi: 10.1016/j.precisioneng.2012.09.004 CrossRefGoogle Scholar
  4. 4.
    Mishra S, Yadava V (2015) Laser beam micromachining (LBMM)—a review. Opt Lasers Eng 73:89–122. doi: 10.1016/j.optlaseng.2015.03.017 CrossRefGoogle Scholar
  5. 5.
    Rajurkar KP, Levy G, Malshe A, Sundaram MM, McGeough J, Hu X, Resnick R, DeSilva A (2006) Micro and nano machining by electro-physical and chemical processes. Annals of the CIRP 55:643–666. doi: 10.1016/j.cirp.2006.10.002 CrossRefGoogle Scholar
  6. 6.
    Kock M, Kirchner V, Schuster R (2003) Electrochemical micromachining with ultrashort voltage pulses–a versatile method with lithographical precision. Electrochimica Acta 48: 3213–3219. Dio:  10.1016/S0013-4686(03)00374-8
  7. 7.
    Schuster R, Kirchner. V, Allongue P, Ertl G (2000) Electrochemical micromachining. Science 289: 98–101. dio:  10.1126/science. 289.5476.98
  8. 8.
    Ahn SH, Ryu SH, Choi DK, Chu CN (2004) Electro-chemical micro drilling using ultra short pulses. Precision Engineering 28: 129-134. dio:  10.1016/j.precisioneng.2003.07.004
  9. 9.
    ZENG WL, Wang ZL (2008) Rapidly erasing maintaining voltage pulse power source used in electrochenmical micromachining. Journal of Shanghai Jiao Tong University 42:1410-1413. doi: 1006-2467(2008)09-1410-04 (in Chinese)Google Scholar
  10. 10.
    Koyano T, Kunieda M (2013) Micro electrochemical machining using electrostatic induction feeding method. CIRP Ann Manuf Technol 62:175–178. doi: 10.1016/j.cirp.2013.03.107 CrossRefGoogle Scholar
  11. 11.
    Ghoshal B, Bhattacharyya B (2015) Investigation on profile of microchannel generated by electrochemical micromachining. J Mater Process Technol 222:410–421. doi: 10.1016/j.jmatprotec.2015.03.025 CrossRefGoogle Scholar
  12. 12.
    Ma XY, Li Y, Lv SJ (2009) Influence of electrolytic products in machining gap on micro ECM. Adv Mater Res 60-61:388–393. doi: 10.4028/ CrossRefGoogle Scholar
  13. 13.
    Fang XL, Qu NS, Zhang YD, Xu Z, Zhu D (2014) Improvement of hole exit accuracy in electrochemical drilling by applying a potential difference between an auxiliary electrode and the anode. J Mater Process Technol 214:556–564. doi: 10.1016/ j.jmatprotec.2013.11.008 CrossRefGoogle Scholar
  14. 14.
    Spieser A, Ivanov A (2015) Design of a pulse power supply unit for micro-ECM . Int J Adv Manuf Technol 78:537–547. doi: 10. 1007/s00170–014–6322-5Google Scholar
  15. 15.
    Ryu SH (2015) Eco-friendly ECM in citric acid electrolyte with microwire and microfoil electrodes. Int J Precis Eng Manuf 16:233–239. doi: 10.1007/s12541-015-0031-3 CrossRefGoogle Scholar
  16. 16.
    Fan ZW, Hourn LW, Lin MY (2012) Experimental investigation on the influence of electrochemical micro-drilling by short pulsed voltage. Int J Adv Manuf Technol 61:957–966. doi: 10.1007/s00170-011-3778-4 CrossRefGoogle Scholar
  17. 17.
    LI XH, WANG ZL, ZHAO WS (2006) Electrolytic micromachining with high frequency short pulse current. Chinese Journal of Mechanical Engineering 42: 162–167. (in Chinese)Google Scholar
  18. 18.
    Bhattacharyya B, Munda J, Malapati M (2004) Advancement in electrochemical micro- machining. Int J Mach Tools Manuf 44:1577–1589. doi: 10.1016/j.ijmachtools.2004.06.006 CrossRefGoogle Scholar
  19. 19.
    Rosenkranz C, Lohrengel MM, Schultze JW (2005) The surface structure during pulsed ECM of iron in NaNO3. Electrochim Acta 50:2009–2016. doi: 10.1016/j.electacta.2004.09.010 CrossRefGoogle Scholar
  20. 20.
    Shibuya N, Ito Y, N. Natsu W (2012) Electrochemical machining of tungsten carbide alloy micro-pin with NaNO3 solution. Int J Precis Eng Manuf 13: 2075–2078. doi:  10.1007/s12541-012-0273-2
  21. 21.
    Chen H, Shi L, Wang ZY, Yu SQ (2013) Electrochemical micro machining of stainless steel in EDTA complex electrolyte. Appl Mech Mater 446-447:214–218. doi: 10.4028/ CrossRefGoogle Scholar
  22. 22.
    Fan ZJ, Wang TC (2004) ECM technology and research methods. Defense Industry Press, Beijing (in Chinese)Google Scholar
  23. 23.
    Liu GD, Li Y, Kong QC, Tong H (2016) Selection and optimization of electrolyte for micro electrochemical machining on stainless steel 304. Procedia CIRP 42:412–417. doi: 10.1016/j.procir.2016.02.223 CrossRefGoogle Scholar
  24. 24.
    Kong QC, Li Y, Liu GD, Li CJ, Tong H (2015) Three-electrode pulse power supply for micro ECM. Journal of Tsinghua University (Science and Technology) 55:266–272 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Quan Cun Kong
    • 1
    • 2
  • Yong Li
    • 1
  • Guo Dong Liu
    • 1
  • Chao Jiang Li
    • 1
  • Hao Tong
    • 1
  • Wei Min Gan
    • 3
  1. 1.State Key Laboratory of Tribology, Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Department of Mechanical EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Instrumentation Science and Opto-Electronics EngineeringBeijing Information Science & Technology UniversityBeijingChina
  3. 3.Digital Electrochemical Machining Key Laboratory of Jiangsu Province/Changzhou Institute of TechnologyChangzhouChina

Personalised recommendations