Hierarchical error model to estimate motion error of linear motion bearing table

  • Gaiyun He
  • Guangming Sun
  • Heshuai Zhang
  • Can Huang
  • Dawei Zhang
ORIGINAL ARTICLE

Abstract

This study presents a general and systematic approach for motion error estimation of a linear motion bearing table based on hierarchical idea. The approach is implemented in the following four steps: (1) dividing the errors of a linear motion system into four tiers, namely Datum Tier, Guideway Tier, Slider Tier, and Table Tier; (2) measuring form errors of Guideway Tier using the proposed method that combines the displacement sensors and laser interferometer; (3) developing a map of the form errors of Guideway Tier and motion errors of Slider Tier using the Hertz contact theory and a transfer function method; and (4) formulating a map between the motion errors of Slider Tier and the error of Table Tier using a direction cosine matrix. The advantage of this approach is that it does not require the assumption that the form error phases of the two guide rails are the same, and thereby provides a more accurate model of motion error. A typical linear motion bearing table is considered as an example to illustrate the generality and effectiveness of the proposed approach.

Keywords

Hierarchical error model Linear motion bearing table Rail form error Motion error 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shi Y, Zhao X, Zhang H, Nie Y, Zhang D (2016) A new top-down design method for the stiffness of precision machine tools. Int J Adv Manuf Technol 83(9):1887–1904CrossRefGoogle Scholar
  2. 2.
    Givi M, Mayer JRR (2015) Volumetric error formulation and mismatch test for five-axis cnc machine compensation using differential kinematics and ephemeral g-code. Int J Adv Manuf Technol 77(9):1–9Google Scholar
  3. 3.
    Gao X, Li B, Hong J (2016) Stiffness modeling of machine tools based on machining space analysis. Int J Adv Manuf Technol 1-14Google Scholar
  4. 4.
    Ma W, He G, Zhu L (2016) Tool deflection error compensation in five-axis ball-end milling of sculptured surface. Int J Adv Manuf Technol 84(5):1421–1430Google Scholar
  5. 5.
    He G, Ma W, Yu G, Lang A (2015) Modeling and experimental validation of cutting forces in five-axis ball-end milling based on true tooth trajectory. Int J Adv Manuf Technol 78(1):189–197CrossRefGoogle Scholar
  6. 6.
    Fernández-Abia AI, Barreiro J, Lacalle LNLD, Martínez-Pellitero S (2012) Behavior of austenitic stainless steels at high speed turning using specific force coefficients. Int J Adv Manuf Technol 62(5):505–515CrossRefGoogle Scholar
  7. 7.
    Gomez-Acedo E, Olarra A, Calle LNLDL (2012) A method for thermal characterization and modeling of large gantry-type machine tools. Int J Adv Manuf Technol 62(9):875–886CrossRefGoogle Scholar
  8. 8.
    Deng Y, Jin X, Zhang Z (2015) A macro–micro compensation method for straightness motion error and positioning error of an improved linear stage. Int J Adv Manuf Technol 80(9):1799–1806CrossRefGoogle Scholar
  9. 9.
    Powałka B, Okulik T (2012) Dynamics of the guideway system founded on casting compound. Int J Adv Manuf Technol 59(1):1–8Google Scholar
  10. 10.
    Slocum AH (1992) Precision machine design. Englewood Cliffs, New JerseyGoogle Scholar
  11. 11.
    Fan K, Li H, Yang J (2015) Traceability analysis and coupling compensation for guideway-induced errors in large CNC gantry guideway grinder. Int J Adv Manuf Technol 80(5):907–919CrossRefGoogle Scholar
  12. 12.
    Chen W, Lu L, Yang K, Huo D, Su H, Zhang Q (2015) A novel machine tool design approach based on surface generation simulation and its implementation on a fly cutting machine tool. Int J Adv Manuf Technol 80(5):829–837CrossRefGoogle Scholar
  13. 13.
    Díaz-Tena E, Ugalde U, Lacalle LNLD, Iglesia ADL, Calleja A, Campa FJ (2013) Propagation of assembly errors in multitasking machines by the homogenous matrix method. Int J Adv Manuf Technol 68(1):149–164CrossRefGoogle Scholar
  14. 14.
    Majda P (2012) Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools. Precis Eng 36(3):369–378CrossRefGoogle Scholar
  15. 15.
    Zha J, Lv D, Jia Q, Chen Y (2016) Motion straightness of hydrostatic guideways considering the ratio of pad center spacing to guide rail profile error wavelength. Int J Adv Manuf Technol 82(9):2065–2073CrossRefGoogle Scholar
  16. 16.
    Shamoto E, Park CH, Moriwaki T (2001) Analysis and improvement of motion accuracy of hydrostatic feed table. CIRP Ann Manuf Techn 50(1):285–290CrossRefGoogle Scholar
  17. 17.
    Hwang J, Park CH, Kim SW (2010) Estimation method for errors of an aerostatic planar XY, stage based on measured profiles errors. Int J Adv Manuf Technol 46(9):877–883CrossRefGoogle Scholar
  18. 18.
    Khim G, Park CH, Shamoto E, Kim SW (2011) Prediction and compensation of motion accuracy in a linear motion bearing table. Precis Eng 35(3):393–399CrossRefGoogle Scholar
  19. 19.
    Khim G, Oh JS, Park CH (2014) Analysis of 5-DOF motion errors influenced by the guide rails of an aerostatic linear motion stage. Int J Precis Eng Man 15(2):283–290CrossRefGoogle Scholar
  20. 20.
    Kim GH, Han JA, Lee SK (2014) Motion error estimation of slide table on the consideration of guide parallelism and pad deflection. Int J Precis Eng Man 15(9):1935–1946CrossRefGoogle Scholar
  21. 21.
    Tanaka H, Tozawa K, Sato H, O-Hori M, Sekiguchi H, Taniguchi N (1981) Application of a new straightness measurement method to large machine tool. CIRP Ann Manuf Techn 30(1):455–459CrossRefGoogle Scholar
  22. 22.
    Tanaka H, Sato H (1986) Extensive analysis and development of straightness measurement by sequential-two-points method. Trans ASME J Eng Ind 108(3):176–182CrossRefGoogle Scholar
  23. 23.
    Hwang J, Park CH, Gao W, Kim SW (2007) A three-probe system for measuring the parallelism and straightness of a pair of rails for ultra-precision guideways. Int J Mach Tools Manuf 47(7):1053–1058CrossRefGoogle Scholar
  24. 24.
    ISO 230–1 (2012) Test code for machine tools-part 1: geometric accuracy of machines operating under no-load or quasi-static conditions, ISOGoogle Scholar
  25. 25.
    Ma J, Lu D, Zhao W (2016) Assembly errors analysis of linear axis of CNC machine tool considering component deformation. Int J Adv Manuf Technol 86(1):1–9Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Gaiyun He
    • 1
  • Guangming Sun
    • 1
  • Heshuai Zhang
    • 1
  • Can Huang
    • 1
  • Dawei Zhang
    • 1
  1. 1.Key Laboratory of Mechanism Theory and Equipment Design of Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations