Dynamic and unified modelling of sustainable manufacturing capability for industrial robots in cloud manufacturing

  • Yuanyuan Zhao
  • Quan Liu
  • Wenjun Xu
  • Xingxing Wu
  • Xuemei Jiang
  • Zude Zhou
  • Duc Truong Pham
ORIGINAL ARTICLE
  • 174 Downloads

Abstract

Industrial robots (IRs) are the important driving force to enable the production activities more automotive and highly efficient in modern manufacturing systems. However, in order to realize the effective employment and intelligent configuration of IRs in cloud manufacturing environment, it is required that the sustainable manufacturing capabilities of IRs can be described in a unified and formal manner. In this paper, a unified sustainable manufacturing capability (SMC) of the IR model is constructed in terms of functional attributes, structural information, activities and process condition. A hybrid logic description method integrating Ontology Web Language with dynamic description logic (DLL) is adopted to provide a semantical representation to both the static and dynamic characteristics of SMC. An interval-state description method is proposed to present energy consumption during the IR’s process in sections. Based on the constructed model, three types of rules are defined to reason the capability of IRs, including stability, energy consumption and production capacity. Finally, a cloud-based prototype system architecture is illustrated. An IR service platform is developed and implemented to verify the proposed model and the defined rules.

Keywords

Industrial robots Sustainable manufacturing capability Dynamic and unified modelling Ontology Dynamic description logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li BH, Zhang L, Wang SL, Tao F, Cao JW, Jiang XD, Song X, Cai XD (2010) Cloud manufacturing: a new service-oriented networked manufacturing model [J]. Comput Integr Manuf Syst 16(1):1–7Google Scholar
  2. 2.
    Xu X (2012) From cloud computing to cloud manufacturing [J]. Robot Comput Integr Manuf 28(1):75–86CrossRefGoogle Scholar
  3. 3.
    Xi WV, Xun W (2013) Xu, An interoperable solution for cloud manufacturing [J]. Robot Comput Integr Manuf 29(4):232–247CrossRefGoogle Scholar
  4. 4.
    Tao F, Zhang L, Guo H, Luo YL, Ren L (2011) Typical characteristics of cloud manufacturing and several key issues of cloud service composition [J]. Comput Integr Manuf Syst 17(3):477–486Google Scholar
  5. 5.
    Ren L, Zhang L, Wang L, Chai FTX (2014) Cloud manufacturing: key characteristics and applications [J]. Int J Comput Integr Manuf:1–15Google Scholar
  6. 6.
    Tao F, Feng Y, Zhang L, Liao TW (2014) CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling [J]. Appl Soft Comput 19:264–279CrossRefGoogle Scholar
  7. 7.
    Wadhwa RS, Lien TK (2013) Manufacturing automation for environmentally sustainable foundries. In: In Re-engineering manufacturing for sustainability, pp 171–174 Springer Singapore CrossRefGoogle Scholar
  8. 8.
    Tao F, Bi LN, Zuo Y, Nee AYC (2016) A hybrid group leader algorithm for green material selection with energy consideration in product design [J]. CIRP Annals-Manufacturing Technology 65(1):9–12CrossRefGoogle Scholar
  9. 9.
    Abele E, Weigold M, Rothenbücher S (2007) Modeling and identification of an industrial robot for machining applications. CIRP Ann Manuf Technol 56(1):387–390CrossRefGoogle Scholar
  10. 10.
    Appleton, E., and Williams, D. Industrial robot applications. Springer Science & Business Media, 2012Google Scholar
  11. 11.
    Chen YH, Dong FH (2013) Robot machining: recent development and future research issues. Int J Adv Manuf Technol 66(9–12):1489–1497CrossRefGoogle Scholar
  12. 12.
    Bugmann G, Siegel M, Burcin R (2011) A role for robotics in sustainable development? IEEE (Institute of Electrical and Electronics Engineers) Africon:13–15Google Scholar
  13. 13.
    Brossog M, Bornschlegl M, Franke J (2015) Reducing the energy consumption of industrial robots in manufacturing systems[J]. Int J Adv Manuf Technol 78(5–8):1315–1328Google Scholar
  14. 14.
    Meeussen W, Hsu J, Diankov R L, URDF—Unified Robot Description Format (April 2012), http://www.ros.org/wiki/urdf. Accessed online 10/30/2016
  15. 15.
    Xiao WL, Ji H, Dong SX (2014) A STEP-compliant industrial robot data model for robot off-line programming systems [J]. Robot Comput Integr Manuf 20(3):114–123CrossRefGoogle Scholar
  16. 16.
    Kunze, L, Roehm T, and Beetz M. (2011) Towards semantic robot description languages. Robotics and Automation (ICRA), 2011 I.E. International Conference on. IEEE.Google Scholar
  17. 17.
    Prestes E, Carbonera JL, Fiorini SR, Jorge AM, V, Mara A, Madhavan R, Locoro A, Goncalves P, Barreto ME, Habib M, Chibani A, Gerard S, Amirat Y, Schlenoff C (2013) Towards a core ontology for robotics and automation[J]. Robot Auton Syst 61(11):1193–1204Google Scholar
  18. 18.
    Vergnano A, Lennartson B, Pellicciari M, Biller S (2012) Modeling and optimization of energy consumption in cooperative multi-robot systems [J]. IEEE Trans Autom Sci Eng 9(2):423–428CrossRefGoogle Scholar
  19. 19.
    Matthias Brossog P, Kohl J, Merhof J, Spreng S, Franke J (2014) Energy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system[C]. Procedia CIRP23:131–136Google Scholar
  20. 20.
    Wolter F, Zakharyaschev M (1998) Dynamic description logics [J]. Advances in Modal Logic 2:431–446MATHGoogle Scholar
  21. 21.
    Chang L, Shi Z, Gu T, Zhao L (2012) A family of dynamic description logics for representing and reasoning about actions[J]. J Autom Reason 49(1):1–52MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mousavi S, Gagnol V, Bouzgarrou BC, Ray P (2016) Dynamic modeling and stability prediction in robotic machining[J]. Int J Adv Manuf Technol:1–13Google Scholar
  23. 23.
    Niu B, Zhang H. Model based control of industrial robot and implementation of its gain scheduling robust control[C]//Robotics and Biomimetics (ROBIO), 2011 I.E. International Conference on IEEE. 2011: 2156–2162.Google Scholar
  24. 24.
    Estévez E, Sánchez-García A, Gámez-García J, Gomez-Ortega J, Satorres-Martinez S (2016) A novel model-driven approach to support development cycle of robotic systems[J]. Int J Adv Manuf Technol 82(1–4):737–751CrossRefGoogle Scholar
  25. 25.
    Steele JW, Wysk RA, Ferreira JCE (2008) A resource-oriented tolerance representation scheme for the planning of robotic machine tending operations in automated manufacturing systems [J]. Int J Adv Manuf Technol 38(7–8):741–756CrossRefGoogle Scholar
  26. 26.
    Vichare P, Nassehi A, Kumar S, Newman S (2009) A unified manufacturing resource model for representing CNC machining systems[J]. Robot Comput Integr Manuf 25(6):999–1007CrossRefGoogle Scholar
  27. 27.
    Niles I and Pease A. (2001) Towards a standard upper ontology[C]. Proceedings of the international conference on Formal Ontology in Information Systems-Volume 2001. ACM, : 2–9.Google Scholar
  28. 28.
    Fiorini SR, Carbonera JL, Gonçalves P, Jorge AM, V, Fortes Ray V, Haidegger T, Abel M, Redfield SA, Balakirsky S, Ragavan V, Li H, Schlenoff C, Prestes E (2015) Extensions to the core ontology for robotics and automation[J]. Robot Comput Integr Manuf 33:3–11Google Scholar
  29. 29.
    Rao RV, Patel BK, Parnichkun M (2011) Industrial robot selection using a novel decision making method considering objective and subjective preferences[J]. Robot Auton Syst 59(6):367–375CrossRefGoogle Scholar
  30. 30.
    Kootbally Z, Kootbally Z (2016) Industrial robot capability models for agile manufacturing[J]. Ind Robot: An Int J 43(5):481–494CrossRefGoogle Scholar
  31. 31.
    Kahraman C, Çevik S, Ates NY, Gülbay M (2007) Fuzzy multi-criteria evaluation of industrial robotic systems. Comput Ind Eng 52(4):414–433CrossRefMATHGoogle Scholar
  32. 32.
    Chemnitz, M., Schreck, G., and Krüger, J. Analyzing energy consumption of industrial robots. 16th IEEE Conference in Emerging Technologies & Factory Automation (ETFA), Toulouse, 2011, September 1–4.Google Scholar
  33. 33.
    Ystgaard P, Gjerstad T B, Lien T K and Nyen P A (2012) Mapping energy consumption for industrial robots.19th CIRP International Conference on Life Cycle Engineering, Berkeley : 251–256.Google Scholar
  34. 34.
    Matthias Brossog P, Bornschlegl M, Franke J (2015) Reducing the energy consumption of industrial robots in manufacturing systems[J]. Int J Adv Manuf Technol 78(5–8):1315–1328Google Scholar
  35. 35.
    Rassolkin A, Hoimoja H, Teemets R (2011) Energy saving possibilities in the industrial robot IRB 1600 control. Compat Power Electron IEEE:226–229Google Scholar
  36. 36.
    Meike D, Pellicciari M, Berselli G (2014) Energy efficient use of multirobot production lines in the automotive industry: detailed system modeling and optimization. IEEE Trans Autom Sci Eng 11(3):798–809CrossRefGoogle Scholar
  37. 37.
    Pellicciari M, Berselli G, Leali F, Vergnano A (2013) A method for reducing the energy consumption of pick-and-place industrial robots[J]. Mechatronics 23(3):326–334CrossRefGoogle Scholar
  38. 38.
    Standard I S O. 8373: 1994[J]. Manipulating industrial robots–Vocabulary,1994.Google Scholar
  39. 39.
    Garetti M, Taisch M (2012) Sustainable manufacturing: trends and research challenges[J]. Prod Plan Control 23(2–3):83–104CrossRefGoogle Scholar
  40. 40.
    Joung CB, Carrell J, Sarkar P, Feng SC (2013) Categorization of indicators for sustainable manufacturing[J]. Ecol Indic 24:148–157CrossRefGoogle Scholar
  41. 41.
    Xu W J, Yu J J, Zhou Z D, Xie Y Q, Pham D T, and Ji C (2015) Dynamic modelling of manufacturing equipment capability using condition information in cloud manufacturing" Journal of Manufacturing Science and Engineering,137:(4).Google Scholar
  42. 42.
    Li-min CLC (2011) Action theory based on the dynamic description logic DDL[J]. Comput Sci 7:045Google Scholar
  43. 43.
    Grosof B N, Horrocks I, Volz R and Decker S (2003) Description logic programs: combining logic programs with description logic[C]. Proceedings of the 12th international conference on World Wide Web. ACM,: 48–57.Google Scholar
  44. 44.
    Chang L, Shi ZZ, Qiu LR, Lin F (2008) A tableau decision algorithm for dynamic description logic[J]. Chin J Comput 31(6):896–909MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • Yuanyuan Zhao
    • 1
    • 2
  • Quan Liu
    • 1
    • 3
  • Wenjun Xu
    • 1
    • 2
  • Xingxing Wu
    • 1
    • 2
  • Xuemei Jiang
    • 1
    • 3
  • Zude Zhou
    • 1
    • 3
  • Duc Truong Pham
    • 4
  1. 1.School of Information EngineeringWuhan University of TechnologyWuhanChina
  2. 2.Hubei Key Laboratory of Broadband Wireless Communication and Sensor NetworksWuhan University of TechnologyWuhanChina
  3. 3.Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of EducationWuhan University of TechnologyWuhanChina
  4. 4.Department of Mechanical Engineering, School of EngineeringUniversity of BirminghamBirminghamUK

Personalised recommendations