Inhibitive performance of Sida acuta and monoethylene glycol on the under deposit corrosion of UNS S30403 stainless steel

  • S. Aribo
  • O. D. Adeyeye
  • S. J. Olusegun
  • O. O. Ige
  • A. S. Ogunbadejo
  • E. O. Igbafen
  • P. A. Olubambi
ORIGINAL ARTICLE
  • 42 Downloads

Abstract

The synergistic effects of monoethylene glycol (MEG) and leaf extract of Sida acuta on UNS S30403 stainless steel under sand deposit in aerated 3.5-wt.% NaCl solution were studied through open circuit potential measurements, potentiodynamic polarization curves, and atomic force microscopy. Phytochemical analysis of the Sida acuta shows the presence of phenol, alkaloid, steroid, flavonoid, and saponin. It was found that the leaf extract inhibited the general and localized corrosion of the stainless steel, especially at a concentration of 400 ppm. With the leaf extract alone, the corrosion resistance increases with increase in inhibitor dosage up until 400 ppm; then, a drop in corrosion resistance was experienced at 600 ppm. However, with the addition of 20 wt.% monoethylene glycol to the environment, the green inhibitor was only effective at 600-ppm dosage. These results show that the presence of MEG can only be tolerated with the inhibitor at higher inhibitor concentrations for this alloy in the environment under study. Adsorption of Sida acuta inhibitor on the steel surface does not follow any adsorption isotherm.

Keywords

UNS S30403 Sida acuta extract MEG Inhibition Corrosion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huang J., Brown, B., Jiang, X., Kinsella, B., and Nesic, S.(2010) Internal CO2 corrosion of mild steel pipelines under inert solid deposits, Corrosion Conference and Expo; Houston, TX: NACE International, paper no 10379.Google Scholar
  2. 2.
    Pedersen, A., Bilkova, K., Gulbrandsen, E., Kvarekvål, J.(2008). CO2 corrosion inhibitor performance in the presence of solids: test method development, Corrosion Conference and Expo; Houston, TX: NACE International, paper no 08632.Google Scholar
  3. 3.
    Almahamedh H. H (2015) Under-deposit caustic corrosion on sodium carbonate pipeline, Procedia Engineering, 114 : 34–37.
  4. 4.
    Tan Y, Fwu Y, Bhardwaj K (2011) Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method, Corr. Sci. 53: (4) 1254–1261
  5. 5.
    Jin H (2013) Mechanistic study of under deposit corrosion of mild steel in aqueous carbon dioxide solution, Ph.D. Thesis, Ohio University, USA1254–1261.Google Scholar
  6. 6.
    Vedapriya Pandarinathan, Kater ina Lepková, Stuart I. Bailey, Rolf Gubner (2013) Evaluation of corrosion inhibition at sand-deposited carbon steel in CO2-saturated brine Corrosion Science, 72:108–117.Google Scholar
  7. 7.
    Loto RT, Loto CA, Popoola AP, Fedotova T (2016) Inhibition effect of 2-amino-5-ethyl-1, 3, 4-thiadiazole on corrosion behaviour of austenitic stainless steel type 304 in dilute HCl solution. J Cent South Univ 23:258–268CrossRefGoogle Scholar
  8. 8.
    Tian W, Du N, Li S, Chen S, Wu Q (2014) Metastable pitting corrosion of 304 stainless steel in 3.5% NaCl solution. Corros Sci 85:372–379CrossRefGoogle Scholar
  9. 9.
    Bin NL, Nakada K (2015) Effect of chloride and sulfate ions in simulated boiler water on pitting corrosion behavior of 13Cr steel. Corros Sci 96:171–177CrossRefGoogle Scholar
  10. 10.
    Lo KH, Shek CH, Lai JKL (2009) Recent developments in stainless steels. Mater. Sci. Eng R Reports 65:39–104CrossRefGoogle Scholar
  11. 11.
    Eduok UM, Umoren SA, Udoh AP (2012) Synergistic inhibition effects between leaves and stem extracts of Sida acuta and iodide ion for mild steel corrosion in 1M H 2SO4 solutions. Arab J Chem 5:325–337CrossRefGoogle Scholar
  12. 12.
    Umoren SA, Eduok UM, Solomon MM, Udoh AP (2016) Corrosion inhibition by leaves and stem extracts of Sida acuta for mild steel in 1 M H2SO4 solutions investigated by chemical and spectroscopic techniques. Arab J Chem 9:S209–S224CrossRefGoogle Scholar
  13. 13.
    Ayeni FA, Alawode S, Joseph D, Sukop P, Olawuyi V, Alonge TE, Alabi OO, Oluwabunmi O, Alo FI (2014) Investigation of Sida acuta ( wire weed ) plant extract as corrosion inhibitor for aluminium-copper-magnessium alloy in acidic medium. J Miner Mater Charact Eng 286–291Google Scholar
  14. 14.
    Johnson AS, Obot IB, Ukpong US (2014) Green synthesis of silver nanoparticles using Artemisia annua and Sida acuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials. J Mater Environ Sci 5:899–906Google Scholar
  15. 15.
    Ekawati D (2011) Effect of temperature, bicarbonate, and MEG concentration on pre-corroded carbon steels. Master’s Thesis: University of Stavanger, Norway.Google Scholar
  16. 16.
    Stefi BA, Bosen SF (1997) Buffering and inhibition of glycol in gas dehydration applications: an alternative to amines. Corrosion 53(2):163–168CrossRefGoogle Scholar
  17. 17.
    Gulbrandsen E, Morard J. (1998) Why does glycol inhibit CO2 corrosion, corrosion Conference and Expo; Houston, TX: NACE International. paper no. 98221.Google Scholar
  18. 18.
    Gregg M.R., Sharp A., Bartrip K. (2003) Corrosion inhibitor developments for offshore gas gathering systems on Canada’s Atlantic coast. Corrosion, paper no. 03332.Google Scholar
  19. 19.
    Pojtanabuntoeng T., Salasi M., Gubner R. (2014) The influence of mono ethylene glycol (MEG) on CO2 corrosion of carbon steel at elevated temperatures (80 to 120 °C), Corrosion Conference and Expo; Houston, TX: NACE International, paper 4176.Google Scholar
  20. 20.
    Javidi M, Khodaparast M (2015) Inhibitive performance of monoethylene glycol on CO2 corrosion of API 5L X52 steel. J Mater Eng Perform 24(4):1417–1425CrossRefGoogle Scholar
  21. 21.
    Olusegun SJ, Oluwasina OO, Alaneme KK, Olubambi PA (2016) Corrosion inhibition of mild steel in acidic solution by cow dung extract as an eco-friendly inhibitor. J. Mater. Environ. Sci. 7:1086–1097Google Scholar
  22. 22.
    Moloney J.J., Mok W.Y., Gamble C.G., Hughes B. (2008) Corrosion and hydrate control in wet sour gas transmission systems. SPE Asia Pacific Oil Gas Conf Exhib 20–22.Google Scholar
  23. 23.
    Aribo S., Sanumi O. J., Olusegun S.J., Ogunbadejo A. S., Ige O.O. (2016):Jatropha curcas as a corrosion inhibitor for API 5L-X65 steel under sand deposit in CO2 and aerated oilfield environments, African Corrosion Journal 2, 1: 17-27.Google Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  • S. Aribo
    • 1
    • 2
  • O. D. Adeyeye
    • 1
  • S. J. Olusegun
    • 1
    • 3
  • O. O. Ige
    • 2
    • 4
  • A. S. Ogunbadejo
    • 1
  • E. O. Igbafen
    • 1
  • P. A. Olubambi
    • 2
  1. 1.Department of Metallurgical and Materials EngineeringFederal University of TechnologyAkureNigeria
  2. 2.Department of Chemical EngineeringUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Departamento de Química, Laboratório de Materiais NanoestruturadosUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  4. 4.Department of Materials Science and EngineeringObafemi Awolowo UniversityIle – IfeNigeria

Personalised recommendations