A study on the different finite element approaches for laser cutting of aluminum alloy sheet

  • S. Peirovi
  • M. Pourasghar
  • A. Farokhi Nejad
  • M. A. Hassan


The effectiveness of finite element simulation techniques for laser cutting of 1.2-mm-thick aluminium sheets has been studied. Lagrangian and Arbitrary Lagrangian-Eulerian techniques were used to model and simulate laser cutting process. The reliability of finite element results were evaluated by general energy balance analysis and experimental results. Temperature and stress distribution along with heat-affected zone were predicted during the laser-induced process in line with experimental conditions under ABAQUS finite element code. Heat transfer analysis relying on thermal loading was employed to reach the best efficiency. By using field-emission scanning electron microscope, morphological, structural, and elemental changes in the cutting sections were analyzed along with the X-ray diffraction technique. Obtained stress and heat-affected zone are highly dependent on the element type as well as numerical method. Both numerical method, ALE and Lagrangian, are compared to each other in terms of power absorption, cut surface morphology, and cutting efficiency. The results show that ALE method is in good agreement with experimental data.


Laser cutting Aluminum sheets Finite element method General energy balance Thermal stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roessler DM (1990) Detroit looks to lasers. Mech Eng-CIME 112:38–46Google Scholar
  2. 2.
    Lawson W (1986) Laser cutting of composites, Society of Manufacturing Engineers, Conference on Composites in Manufacturing, 5 th, Los Angeles, CA, 1986Google Scholar
  3. 3.
    Keikhosravy M, Hashemi Oskouei R, Soltani P, Atas A, Soutis C (2012) Effect of geometric parameters on the stress distribution in Al 2024-T3 single-lap bolted joints. Int J Struct Integr 3(1): 79–93CrossRefGoogle Scholar
  4. 4.
    Sharma A, Yadava V (2012) Modelling and optimization of cut quality during pulsed Nd: YAG Laser cutting of thin Al-alloy sheet for straight profile. Opt Laser Technol 44(1):159–168CrossRefGoogle Scholar
  5. 5.
    Kim MJ, Majumdar P (1995) Computational model for high-energy laser-cutting process. Numer Heat Transfer, Part A: Appl 27(6):717–733CrossRefGoogle Scholar
  6. 6.
    Eltawahni HA, Hagino M, Benyounis KY, Inoue T, Olabi A-G (2012) Effect of CO 2 laser cutting process parameters on edge quality and operating cost of AISI316l. Opt Laser Technol 44(4):1068–1082CrossRefGoogle Scholar
  7. 7.
    Stournaras A, Stavropoulos P, Salonitis K, Chryssolouris G (2009) An investigation of quality in CO 2 laser cutting of aluminum. CIRP J Manuf Sci Technol 2(1):61–69CrossRefGoogle Scholar
  8. 8.
    Wang Y, Wang X, Kang R, Xu W, Guo D (2012) Experimental study on laser cutting based on removal forms for aluminum alloy sheet, Zhongguo Jiguang(Chinese journal of lasers), 39, 8 0803007–7Google Scholar
  9. 9.
    Anthony TR, Cline HE (1977) Surface rippling induced by surface-tension gradients during laser surface melting and alloying. J Appl Phys 48(9):3888–3894CrossRefGoogle Scholar
  10. 10.
    Pandey AK, Dubey AK (2013) Multiple quality optimization in laser cutting of difficult-to-laser-cut material using grey–fuzzy methodology. Int J Adv Manuf Technol 65(1–4):421–431CrossRefGoogle Scholar
  11. 11.
    Dubey AK, Norkey G, Agrawal S (2012) Parameter optimisation in laser cutting of aluminium alloy sheet. Int J Mechatronics Manuf Syst 5(3-4):179–188Google Scholar
  12. 12.
    Sheng PS, Joshi VS (1995) Analysis of heat-affected zone formation for laser cutting of stainless steel. J Mater Process Technol 53(3):879–892CrossRefGoogle Scholar
  13. 13.
    Yilbas BS, Akhtar S, Karatas C (2012) Laser straight cutting of alumina tiles: thermal stress analysis. Int J Adv Manuf Technol 58(9-12):1019–1030CrossRefGoogle Scholar
  14. 14.
    Yilbas BS, Akhtar S, Keles O (2014) Laser cutting of triangular blanks from thick aluminum foam plate: Thermal stress analysis and morphology. Appl Therm Eng 62(1):28–36CrossRefGoogle Scholar
  15. 15.
    Yi P, Liu Y, Shi Y, Jang H, Lun G (2011) Effects analysis of ambient conditions on process of laser surface melting. Opt Laser Technol 43(8):1411–1419CrossRefGoogle Scholar
  16. 16.
    Anderson MC, Shin YC (2006) Laser-assisted machining of an austenitic stainless steel: P550. Proc Inst Mech Eng B J Eng Manuf 220(12):2055–2067CrossRefGoogle Scholar
  17. 17.
    Fu CH, Sealy MP, Guo YB, Wei XT (2015) Finite element simulation and experimental validation of pulsed laser cutting of nitinol. J Manuf Process 19:81–86CrossRefGoogle Scholar
  18. 18.
    Sharma P, Dubey AK, Pandey AK (2014) Numerical study of temperature and stress fields in laser cutting of aluminium alloy sheet. Procedia Mater Sci 5:1887–1896CrossRefGoogle Scholar
  19. 19.
    Kardas OO, Keles O, Akhtar S, Yilbas BS (2014) Laser cutting of rectangular geometry in 2024 aluminum alloy: Thermal stress analysis. Opt Laser Technol 64:247–256CrossRefGoogle Scholar
  20. 20.
    Donea J, Huerta A (2003) Finite element methods for flow problems, John Wiley & SonsGoogle Scholar
  21. 21.
    (2012). Systèmes, Dassault, Abaqus v6. 12 Documentation-ABAQUS analysis users manual, Abaqus, Providence RIGoogle Scholar
  22. 22.
    Mase GT, Smelser RE, Mase GE (2009) Continuum mechanics for engineers, CRC pressGoogle Scholar
  23. 23.
    Hibbitt K (2001) Sorensen ABAQUS/explicit Users ManualGoogle Scholar
  24. 24.
    Glaser S, Kröplin B (1991) Thermo Mechanical Coupling in Elasto-Plastic Analysis, The finite element method in the 1990s, 59–67 SpringerGoogle Scholar
  25. 25.
    Ivarson A, Magnusson C, Powell J (1994) An energy balance for inert gas laser cutting. Laser Mater Process 2306:12Google Scholar
  26. 26.
    Ng SL, Lum KCP, Black I (2000) CO 2 Laser cutting of MDF: 2. Estimation of power distribution. Opt Laser Technol 32(1): 77–87CrossRefGoogle Scholar
  27. 27.
    Chien CY, Gupta MC (2005) Pulse width effect in ultrafast laser processing of materials. Appl Phys A 81 (6):1257–1263CrossRefGoogle Scholar
  28. 28.
    Ogden RW, Roxburgh DG (1999) A pseudo–elastic model for the Mullins effect in filled rubber, Proc R Soc Lond A: Math, Phys Eng Sci, 455, 1988, 2861–2877, The royal societyGoogle Scholar
  29. 29.
    Li C, Thomas BG (2004) Thermomechanical finite-element model of shell behavior in continuous casting of steel. Metall Mater Trans B 35(6):1151–1172CrossRefGoogle Scholar
  30. 30.
    Donea J, Huerta A, Ponthot J-P, Rodriguez-Ferran A (2004) Encyclopedia of computational mechanics vol. 1 fundamentals. Chapter 14: Arbitrary Lagrangian-Eulerian methodsGoogle Scholar
  31. 31.
    Ctibor P, Kraus L, Tuominen J, Vuoristo P, Chraska P (2007) Improvement of mechanical properties of alumina and zirconia plasma sprayed coatings induced by laser post-treatment. Ceram Silik 51(4):181Google Scholar
  32. 32.
    Scintilla LD, Tricarico L (2013) Fusion cutting of aluminum, magnesium, and titanium alloys using high-power fiber laser. Opt Eng 52(7):076115–076115CrossRefGoogle Scholar
  33. 33.
    Kim MJ (2000) Transient evaporative laser-cutting with boundary element method. Appl Math Model 25 (1):25–39MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Yilbas BS, Akhtar S, Karatas C (2014) Laser cutting of triangular geometry into alumina tiles: morphological changes and thermal stress analysis. Mach Sci Technol 18(3):424–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Automatic Control DepartmentUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Dipartimento di ing. Meccanica e aerospazialeTorinoItaly

Personalised recommendations