Effect of generatrix profile on single-point incremental forming parameters

ORIGINAL ARTICLE

Abstract

The single-point incremental forming is one of two modes of the incremental sheet forming process. It is the most used in the manufacture of parts for small series and prototypes in various sectors such as aeronautics, biomedical field, and art pieces. In this work, two geometries of parts are investigated at the same process parameters (rotation speed, feed rate, step increment, sheet thickness, and tool diameter). The experimental tests are made with a CNC spinner milling machine. The blank sheet of mild steel is formed by means of a hemispherical tool with a 10-mm diameter. The forming tool follows the desired spiral path that is determined by a CAD model. The main objective of this paper is to study the effects of the generatrix profile for two shapes of a truncated cone (straight and circular generatrix) on forming forces, thickness distribution, shape accuracy, and surface roughness of the formed shape. Besides, a coefficient of shape is introduced from experimental and analytical vertical forces. The experimental results show that a better roughness surface quality is obtained in forming a straight generatrix and that a more uniform thickness distribution of the blank is obtained after thinning and shaping a circular generatrix. In order to examine the geometric accuracy of the parts, a Next Engine 3D scanner is used to rebuild the developed surfaces again and to make a comparison between the programmed and scanned profiles.

Keywords

Single-point incremental forming Generatrix 3D scanning Thickness Shape accuracy Roughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Leszak E (1967) Apparatus and process for incremental dieless forming. United States Patent Office US3342051Google Scholar
  2. 2.
    Matsubara S (2001) A computer numerically controlled dieless incremental forming of a sheet metal. Proc Inst Mech Eng Part BJ Eng Manuf 215:959–966CrossRefGoogle Scholar
  3. 3.
    Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann Manuf Technol 54(2):88–114CrossRefGoogle Scholar
  4. 4.
    Saidi B, Boulila A, Ayadi M, Nasri R (2015) Experimental force measurements in single point incremental sheet forming SPIF. Mech Ind. doi: 10.1051/meca/2015018
  5. 5.
    Benmessaoud R (2014) A tool path generation method for the multi-pass incremental forming process investigation. Int J Adv Res Comp Sci Softw Eng 4(5):1035–1044Google Scholar
  6. 6.
    Nicolas D (2009) Formage incrémental de tole d'aluminium: étude du procédé à l'aide de la mesure de champs et identication de modèles de comportement.PhD. thesis, Toulouse-III-Paul-Sabatier University, FranceGoogle Scholar
  7. 7.
    McAnulty T, Jeswiet J, Doolan M (2017) Formability in single point incremental forming: a comparative analysis of the state of the art. CIRP J Manuf Sci Technol 16:43–54CrossRefGoogle Scholar
  8. 8.
    Xu Z, Gao L, Hussain G, Cui Z (2010) The performance of flat end and hemispherical end tools in single-point incremental forming. Int J Adv Manuf Technol 46(9):1113–1118Google Scholar
  9. 9.
    Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Technol 130:42–46CrossRefGoogle Scholar
  10. 10.
    Durante M, Formisano A, Langella A (2011) Observations on the influence of tool-sheet contact conditions on an incremental forming process. J Mater Eng Perform 20(6):941–946CrossRefGoogle Scholar
  11. 11.
    Li Y, Liu Z, Daniel WJT, Meehan PA (2014) Simulation and experimental observations of effect of different contact interfaces on the incremental sheet forming process. Mater Manuf Process 29:121–128CrossRefGoogle Scholar
  12. 12.
    Lu B, Fang Y, Xu DK, Chen J, Ou H, Moser NH, Cao J (2014) Mechanism investigation of friction-related effects in single point incremental forming using a developed oblique roller-ball tool. Int J Mach Tools Manuf 85:14–29CrossRefGoogle Scholar
  13. 13.
    Hussain G, Khan HR, Gao L, Hayat N (2013) Guidelines for tool-size selection for single-point incremental forming of an aerospace alloy. Mater Manuf Process 28:324–329CrossRefGoogle Scholar
  14. 14.
    Fang Y, Lu B, Chen J, Xu DK, Ou H (2014) Analytical and experimental investigations on deformation mechanism and fracture behavior in single point incremental forming. J Mater Process Technol 214:1503–1515CrossRefGoogle Scholar
  15. 15.
    Thibaud S, Ben Hmida R, Richard F, Malécot P (2012) A fully parametric toolbox for the simulation of single point incremental sheet forming process: numerical feasibility and experimental validation. Simul Model Pract Th 29:32–43CrossRefGoogle Scholar
  16. 16.
    Bagudanch I, Garcia-Romeu ML, Sabater M (2016) Incremental forming of polymers: process parameters selection from the perspective of electric energy consumption and cost. J Clean Prod 112:1013–1024CrossRefGoogle Scholar
  17. 17.
    Ambrogio G, Duflou J, Filice L, Aerens R (2007) Some considerations on force trends in incremental forming of different materials. 10th ESAFORM Conference on material forming ( HYPERLINK “http://AIP.Scitation.Org/journal/apc” AIP Conference proceedings ), American Institute of Physics
  18. 18.
    Duflou J, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189(1–3):65–72CrossRefGoogle Scholar
  19. 19.
    Petek A, Kuzman K, Kopaè J (2009) Deformations and forces analysis of single point incremental sheet metal forming. Arch Mater Sci Eng 35:107–116Google Scholar
  20. 20.
    Aerens R, Eyckens P, Van Bael A, Duflou JR (2010) Force prediction for single point incremental forming deduced from experimental and FEM observations. Inter J Adv Manuf Technol 46:969–982CrossRefGoogle Scholar
  21. 21.
    Pérez-Santiago R, Bagudanch I, García-Romeu ML (2011) Force modeling in single point incremental forming of variable wall angle components. Key Eng Mater 473:833–840CrossRefGoogle Scholar
  22. 22.
    Aerens R, Duflou JR, Eyckens P, Van Bael A (2009) Inter J Mater Form 2:25–28CrossRefGoogle Scholar
  23. 23.
    Bagudanch I, Centeno G, Vallellano C, Garcia-Romeu ML (2013) Forming force in Single Point Incremental Forming under different bending conditions. MESIC The Manufacturing Engineering Society International Conference. Elsevier Ltdp. 354–360Google Scholar
  24. 24.
    Junk S, Hirt G, Bambach M, Chouvalova I, Ames J. (2003). Flexible CNC flexible CNC incremental sheet forming: process evaluation and simulation. Conferência Nacional de Conformação de Chapas, 15, Outubro Porto Alegre/RS, Brasil, ed. Schaeffer L, Gráfica e Editora Brasul Ltda p. 30-38.Google Scholar
  25. 25.
    Thakur R, Kumar N (2015) Optimization of surface roughness and improving profile accuracy in SPIF (single point incremental forming) process. Inter J Curr Eng Technol 5:2048–2052Google Scholar
  26. 26.
    Gulati V, Aryal A, Katyal P, Goswami A (2016) Process parameters optimization in single point incremental forming. J Inst Eng India Ser C 97:185–193CrossRefGoogle Scholar
  27. 27.
    Cerro I, Maidagan E, Arana J, Rivero A, Rodríguez PP (2006) Theoretical and experimental analysis of the dieless incremental sheet forming process. J Mater Process Technol 177(1–3):404–408CrossRefGoogle Scholar
  28. 28.
    Blaga A, Oleksik V (2013) A study on the influence of the forming strategy on the main strains, thickness reduction, and forces in a single point incremental forming process. Adv Mater Sci Eng. doi: 10.1155/2013/382635
  29. 29.
    Alves ML, Silva MB, Alves LM, Martins PAF (2009) On the formability, geometrical accuracy and surface quality of sheet metal parts produced by SPIF.Proc. SPIE 7375ICEM 2008: International Conference on Experimental MechanicsGoogle Scholar
  30. 30.
    Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in single point incremental forming: state of the art and future trends. J Mater Process Technol 191:390–395CrossRefGoogle Scholar
  31. 31.
    Durante M, Formisano A, Langella A, Capece Minutolo FM (2009) The influence of tool rotation on an incremental forming process. J Mater Process Technol 209(9):4621–4626CrossRefGoogle Scholar
  32. 32.
    Rauch M, Hascoet JY, Hamann JC, Plenel Y (2009) Tool path programming optimization for incremental sheet forming applications. Comput Aided Design 41:877–885CrossRefGoogle Scholar
  33. 33.
    Cavaler LCC, Schaeffer L, Rocha AS, PERUCH F (2010) Surface roughness in the incremental forming of AISI 304L stainless steel sheets. Far East J Mech Eng Phys 1:87–98Google Scholar
  34. 34.
    Arshad S (2012) A study of forming parameters, forming limits and part accuracy of aluminium 2024, 6061 and 7475 alloys. PhD. thesis, KTH Royal Institute of technology Stockholm, SwedenGoogle Scholar
  35. 35.
    Gatea S, Ou H, McCartney G (2016) Review on the influence of process parameters in incremental sheet forming. Int J Adv Manuf Technol 87:479–499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Mechanical Laboratory of Sousse, National Engineering School of SousseUniversity of SousseSousse ErriadhTunisia
  2. 2.National Institute of Applied Science and Technology, Centre Urbain NordUniversity of CarthageTunis CedexTunisia

Personalised recommendations