Oborski P (2014) Developments in integration of advanced monitoring systems. Int J Adv Manuf Technol 75(9–12):1613–1632. doi:10.1007/s00170-014-6123-x
Article
Google Scholar
Severson K, Chaiwatanodom P, Braatz RD (2015) Perspectives on process monitoring of industrial systems. IFAC-PapersOnLine 48(21):931–939. doi:10.1016/j.arcontrol.2016.09.001. doi:10.1016/j.ifacol.2015.09.646
Article
Google Scholar
Stavropoulos P, Papacharalampopoulos A, Vasiliadis E, Chryssolouris G (2016) Tool wear predictability estimation in milling based on multi-sensorial data. Int J Adv Manuf Technol 82(1–4):509–521. doi:10.1007/s00170-015-7317-6
Article
Google Scholar
Ostasevicius V, Jurenas V, Augutis V, Gaidys R, Cesnavicius R, Kizauskiene L, Dundulis R (2016) Monitoring the condition of the cutting tool using self-powering wireless sensor technologies. The International Journal of Advanced Manufacturing Technology, pp 1–15. doi:10.1007/s00170-016-8939-z
Seemuang N, McLeay T, Slatter T (2016) Using spindle noise to monitor tool wear in a turning process. International Journal of Advanced Manufacturing Technology, pp 1–10. doi:10.1007/s00170-015-8303-8
Psarakis S (2015) Adaptive control charts: recent developments and extensions. Qual Reliab Eng Int 31 (7):1265–1280. doi:10.1002/qre.1850
MathSciNet
Article
Google Scholar
Yang L, Sheu S H (2006) Integrating multivariate engineering process control and multivariate statistical process control. Int J Adv Manuf Technol 29(1-2):129–136. doi:10.1007/s00170-014-6641-6
Article
Google Scholar
Bersimis S, Psarakis S, Panaretos J (2007) Multivariate statistical process control charts: an overview. Qual Reliab Eng Int 23(5):517–543. doi:10.1002/qre.829
Article
Google Scholar
Costa AFB, Machado MAG (2009) A new chart based on sample variances for monitoring the covariance matrix of multivariate processes. Int J Adv Manuf Technol 41(7-8):770–779. doi:10.1007/s00170-008-1502-9
Article
Google Scholar
Dharmasena LS, Zeephongsekul P (2015) A new process capability index for multiple quality characteristics based on principal components. Int J Prod Res 2015:1–17. doi:10.1080/00207543.2015.1091520
Google Scholar
Sullivan LP (1985) Letters. Qual Prog 18:7–8
Google Scholar
Kane VE (1986) Process capability indices. J Qual Technol 18(1):41–52
Google Scholar
Chan LK, Cheng SW, Spiring FA (1988) A new measure of process capability: Cpm. J Qual Technol 20(3):162–175. doi:10.1108/02656710110396076
Google Scholar
Pearn WL, Kotz S, Johnson NL (1992) Distributional and inferential properties of process capability indices. J Qual Technol 24(4):216–231. doi:10.1080/03610929808832139
Google Scholar
Veevers A (1998) Viability and capability indexes for multiresponse processes. J Appl Stat 25(4):545–558. doi:10.1080/02664769823016
Article
MATH
Google Scholar
Gonzalez I, Sanchez I (2009) Capability indices and nonconforming proportion in univariate and multivariate processes. Int J Adv Manuf Technol 44:1036–1050. doi:10.1007/s00170-008-1907-5
Article
Google Scholar
Zwick D S (1995) A hybrid method for fitting distribution data and its use in computing process capability indices. Qual Eng 7(3):601–613. doi:10.1080/08982119508918806
Article
Google Scholar
Yang J, Gang T, Cheng Y, Xie M (2015) Process capability indices based on the highest density interval. Qual Reliab Eng Int 31(8):1327–1335. doi:10.1002/qre.1665
Article
Google Scholar
Lupo T (2015) The new Nino capability index for dynamic process capability analysis. Qual Reliab Eng Int 31(2):305–312. doi:10.1002/qre.1589
Article
Google Scholar
Eslamipoor R, Hosseini-nasab H (2016) A Modified Process Capability Index Using Loss Function Concept. Qual Reliab Eng Int 32(2):435–442. doi:10.1002/qre.1761
Article
Google Scholar
Pearn WL, Shiau JJH, Tai YT, Li MY (2011) Capability assessment for processes with multiple characteristics: a generalization of the popular index Cpk. Qual Reliab Eng Int 27(8):1119–1129
Article
Google Scholar
Perakis M, Xekalaki E (2011) On the implementation of the principal component analysis-based approach in measuring process capability. Qual Reliab Eng Int 28(4):467–480. doi:10.1002/qre.1260
Article
Google Scholar
Tano I, Vännman K (2013) A multivariate process capability index based on the first principal component only. Qual Reliab Eng Int 29(7):987–1003. doi:10.1002/qre.1451
Article
Google Scholar
Shaoxi W, Mingxin W, Xiaoya F, Shengbing Z, Ru H (2013) A multivariate process capability index with a spatial coefficient. J Semicond 34(2). doi:10.1088/1674-4926/34/2/026001
Das N, Dwivedi PS (2013) Multivariate process capability index: a review and some results. Econ Qual Control 28(2):151–166. doi:10.1515/eqc-2013-0022
Article
MATH
Google Scholar
Shiau J, Yen C, Pearn WL, Lee W (2013) Yield-related process capability indices for processes of multiple quality characteristics. Qual Reliab Eng Int 29(4):487–507. doi:10.1002/qre.1397
Article
Google Scholar
Jalili M, Bashiri M, Amiri A (2012) A new multivariate process capability index underboth unilateral and bilateral quality characteristics. Qual Reliab Eng Int 28(8):925–941. doi:10.1002/qre.1284
Article
Google Scholar
Ciupke K (2015) Multivariate process capability vector based on one-sided model. Qual Reliab Eng Int 31(2):313–327. doi:10.1002/qre.1590
Article
Google Scholar
Pan JN, Huang WKC (2015) Developing new multivariate process capability indices for autocorrelated data. Qual Reliab Eng Int 31(3):431–444. doi:10.1002/qre.1603
Article
Google Scholar
Wang FK, Tamirat Y (2015) Process Yield for Multivariate Linear Profiles with One-sided Specification Limits. Quality and Reliability Engineering International. doi:10.1002/qre.1834
De-Felipe D, Klee T, Folmer J, Benedito E, Vogel-Heuser B (2016) A multivariate process capability index that complies with industry requirements. Paper presented at the Conference of IEEE Industrial Electronics Society (IECON), Florence, doi:10.1109/IECON.2016.7793509
Castagliola P (1996) Evaluation of non-normal process capability indices using Burr’s distributions. Qual Eng 8(4):587–593. doi:10.1080/08982119608904669
Article
Google Scholar
De-Felipe D, Benedito E (2017) A review of univariate and multivariate process capability indices. The International Journal of Advanced Manufacturing Technology, pp 1–19. doi:10.1007/s00170-017-0273-6
Bothe DR (1999) Composite capability index for multiple product characteristics. Qual Eng 12(2):253–258. doi:10.1080/08982119908962582
Article
Google Scholar