Experimental and finite element analysis of residual stresses in cold tube drawing process with a fixed mandrel for AISI 1010 steel tube

ORIGINAL ARTICLE

Abstract

Cold tube drawing with a fixed straight mandrel (fixed plug) is one of the major drawing process in tube drawing operations. Although the process has high dimensional accuracy and good surface finish in general, the process parameters have significant effects on part quality. Therefore, an accurate finite element model is extremely important to improve part quality and reduce the cost of the part. In this article, a cold tube drawing with a fixed straight mandrel is studied experimentally and numerically for AISI 1010 steel tube. Two different reduction of areas of 16 and 23% are considered. X-ray diffraction (XRD) method is used to determine hoop residual stresses inside the tube wall at five different orientations. The experimental models are validated successfully with finite element analysis (FEA) by correlations of the compression force vs. the displacement and the residual stress vs. the position. Effect of the drawing parameters on the hoop residual stress is studied by an axisymmetric finite element model. Although the reduction of area strongly affects the residual stress compared to other process parameters, the friction coefficient has minimum effect on residual stresses. This study concludes that the residual stress states inside the tube wall produced by cylindrical and conical plugs are completely different.

Keywords

Cold tube drawing Drawing parameters Hoop residual stress X-ray diffraction Finite element analysis AISI 1010 steel tube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chakrabarty J (2006) Theory of plasticity, Third edn. Texas A & M University System, USAMATHGoogle Scholar
  2. 2.
    Lazzarotto L, Dubar L, Dubois A, Ravassard P, Oudin J (1997) Identification of Coulomb’s friction coefficient in real contact conditions applied to a wire drawing process. Wear 211:54–63. doi: 10.1016/S0043-1648(97)00080-X CrossRefGoogle Scholar
  3. 3.
    Ravichandran G., Rosakis A., Hodowany J., Rosakis P (2001) On the conversion of plastic work into heat during high-strain rate deformation. Shock compression of condensed matter. 557-562. doi: 10.1063/1.1483600.
  4. 4.
    Neves F, Button S, Caminaga C, Gentile F (2005) Numerical and experimental analysis of tube drawing with fixed plug. J Brazi Soci Mech Sci 4:426–431. doi: 10.1590/S1678-58782005000400011 CrossRefGoogle Scholar
  5. 5.
    Kim S W, Kown Y N, Lee Y S, Lee J H (2007) Desgin of mandrel in tube drawing process for automotive steering in put shaft. J Mat Proc Tech. 187-188:182-186. doi: 10.10.16/j.jmatprote.2006.11.134.Google Scholar
  6. 6.
    Kuboki T, Nishida T, Murata M (2008) Effect of plug on levelling of residual stress in tube drawing. J Mat Proc Tec. 204:162-168. doi:10.10.19/j/jmatprotec2007.11.029.Google Scholar
  7. 7.
    Danckert J, Endelt B (2009) LS-DYNA used to analyze the drawing of precision tubes. 7th European LS-DYNA conference.Google Scholar
  8. 8.
    Delgadillo R, Fiorentini F, Rodrigues D, Freire F, Vieira D (2010) Measurement of stresses in pipelines using hole drilling rosettes. Conference Proceeding of the Society for Exprimental Series 6:175–183. doi: 10.1007/8-4419-9792-0-34 Google Scholar
  9. 9.
    Pirling T, Carrado A, Palkowski H (2011) Residual stress distribution in seamless tube determined experimentally and by FEM. J of Proceda Eng 10:3080–3085. doi: 10.1016/j.proeng.2011.04.510 CrossRefGoogle Scholar
  10. 10.
    Palkowski H, Bruck S, Pirling T, Carrado A (2013) Investigation of the residual stress state of drawn tubes by numerical simulation and neutron diffraction analysis. Mat 6:5118–5130. doi: 10.3390/ma6115118 Google Scholar
  11. 11.
    Bihamta R, Bui QH, Guillot M, Amours G, Rahem A, Fafard M (2012) Application of a new procdure for optimization of variable thickness drawing of aluninum tubes. CRIP J Manf Sci Tech 5:142–150. doi: 10.1016/j.cirpj.2012.03.006 CrossRefGoogle Scholar
  12. 12.
    Shekoofa O, Wang J, Qi J, Zang J, Yin Z (2014) Analysis of residual stress for mismatch metal-glass seal. J Solar Energy Mat Solars Cells 128:421–426. doi: 10.1016/j.solmat.2014.05.042 CrossRefGoogle Scholar
  13. 13.
    Foadian F, Carrado A, Palkowski H (2015) Precision tube production: influencing the eccentricity and residual stresses by tilting and shifting. J Mat Proc Tech 222:155–162. doi: 10.1016/j.jmatprotec.2015.03.008 CrossRefGoogle Scholar
  14. 14.
    Foadin F, Carrado A, Pirling T, Palkowski H (2016) Residual stresses evolution in Cu tubes, cold drawn with tilted dies—neutron diffraction measurements and finite element simulation. J Mat & Des 107:163–170. doi: 10.1016/j.matdes.2016.06.028 Google Scholar
  15. 15.
    Anderogl O (2004) Residual stress measurement using x-ray diffraction. Texas A&M University, Master ThesisGoogle Scholar
  16. 16.
    Fitzpatrick M, Fry A, Holdway F, Shackleton J, Suominen L ( 2005) Determination of residual stresses by X-ray diffraction. Nat Phy lab, measurement good practice guide no.52.Google Scholar
  17. 17.
    Rangaswamy P, Prime M, Daymond M, Bourk M, Clasusen B, Choo H, Jayaraman N (1999) Comparison of residual strains measured by x-ray and neutron diffraction in a titanium (Ti-6A1-4V) matrix composite. J of Mat Sci & Eng 259:209–219. doi: 10.1016/S0921-5093(98)00893-4 CrossRefGoogle Scholar
  18. 18.
    Beland J, Fafard M, Rahem A, Amours G, Cote T (2011) Optimization on the cold drawing process of 6063 aluminium tubes. J of App Math Mode 35:5302–5313. doi: 10.1016/j.amp.2016.04.025 CrossRefGoogle Scholar
  19. 19.
    Prevéy P S (1986) X-ray diffraction residual stress techniques. Metals handbook. 10. Metals Park: American Society for Metals, 380-392.Google Scholar
  20. 20.
    Bagherifard S, Ghelichi R, Guagliano M (2010) A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material. Surface & Coatings Technol 204:4081–4090. doi: 10.1016/j.surfcoat.2010.05.035 CrossRefGoogle Scholar
  21. 21.
    Rangswamy P, Prime MB, Daymond M, Bourke MAM, Clausen B, Choo H, Jayaraman N (1999) Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti–6Al–4V) matrix composite. Mat Sci & Eng A259:209–219. doi: 10.1016/S0921-5093(98)00893-4 CrossRefGoogle Scholar
  22. 22.
    Syahrulbil S, Hariz M, Hamid M, Baker A (2013) Friction characteristic of mineral oil containing plam fatty acid distillate using four ball tribo-tester. J of Procedia Eng 68:166–171. doi: 10.1016/j.proeng.2013.12.163 CrossRefGoogle Scholar
  23. 23.
    Onuh S, Ekoja M, Adeyemi M (2003) Effects of die geometry and extrusion speed on the cold extrusion of aluminium and lead alloys. J of Mat Proc Tech 132:274–285. doi: 10.1016/S0924-0136(02)0094-X CrossRefGoogle Scholar
  24. 24.
    Akiyama M, Kuboki T (2002) Optimization of method for reducing residual stresses after cold bar drawing. J of Ironmaking & Steelmaking 29:101–106. doi: 10.1179/030192302225001974 CrossRefGoogle Scholar
  25. 25.
    Wang Z, Cong B (2002) Residual stress in forming of materials. Handbook of residual stress and deformation of steel, ASM International, pp 141–149. doi: 10.1361/hrsd2002p141 Google Scholar
  26. 26.
    A S Rocha, R M Nunes, T Hirsch (2011) Changes in the axial residual stresses in AISI 1045 steel bars resulting from a combined drawing process chain. J. Engineering Manufacture 226: 459–465. doi:  10.1177/0954405411422299

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Jabbar Gattmah
    • 1
    • 2
  • Fahrettin Ozturk
    • 3
  • Sadettin Orhan
    • 1
  1. 1.Department of Mechanical EngineeringAnkara Yildirim Beyazit UniversityAnkaraTurkey
  2. 2.Department of Mechanical EngineeringDiyala UniversityDiyalaIraq
  3. 3.TAI-Turkish Aerospace Industries, Inc.AnkaraTurkey

Personalised recommendations