Three-dimensional numerical modeling of the friction stir welding of dissimilar steels

  • C. A. Hernández
  • V. H. Ferrer
  • J. E. Mancilla
  • L. C. Martínez
ORIGINAL ARTICLE
  • 179 Downloads

Abstract

Steady- and transient-state solutions are developed to predict temperature, streamlines, stress, and viscosity distributions during the friction stir welding of dissimilar carbon steels AISI/SAE 1008 and 1078. The mass, momentum, and energy transport equations are solved using a Eulerian formulation within the computational fluid dynamics package FLUENT in the plates of dissimilar steels being joined. Viscoplastic behavior in the stir zone is supposed. Both Medina and Hernandez flow stress and Perzyna viscoplastic models are used to model this behavior. The Medina and Hernandez model calculates the flow stress based on the Zener–Hollomon parameter, which is valid for large deformations and high strain rates and takes into account the steel chemical composition of any structural steels having low or medium carbon contents. The present work couples this flow stress model to the continuity, momentum, and energy transport equations. Temperature-dependent thermal properties are taken from the literature. A comparison of temperature cycles taken from published experimental data and those obtained by simulation is presented. Results indicate that the steady-state simulation can provide solutions more quickly than simulation using the transient model. However, the latter simulation provides temperature, stress, viscosity, and volume fraction distributions that are more detailed than those that the former simulation provides, with the distributions being asymmetric at welding times longer than 30 s. Volume fraction distributions are more symmetric for a rotational speed ? = 450 rpm and a welding velocity U = 0.31 mm s -1. The shape of the stir region is strongly related to the temperatures on the advancing side (AISI 1008 steel) and retreating side (AISI 1078 steel) and the thermo-mechanical properties of the steels; the lobular shapes correspond to those found experimentally.

Keywords

Friction stir welding FSW Modeling Numerical simulation Heat generation Heat transfer Metal flow Dissimilar joint Carbon steels Material flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge financial support from the Instituto Politécnico Nacional —México– (Nos. SIP20162123, SIP20161930, and SIP20171747). Special recognition is extended to Dr. A. Keer Rendon of CAVENDISHCFD for their constant help, encouragement and support.

References

  1. 1.
    Kumar N, Yuan W, Mishra R S (2015) chapter 2 - A framework for friction stir welding of dissimilar alloys and materials. In: Kumar n, Yuan W, Mishra R S (eds) Friction Stir Welding of Dissimilar Alloys and Materials. Friction Stir Welding and Processing. Butterworth-Heinemann, pp 15–33Google Scholar
  2. 2.
    Thomas W M, Nicholas E, Needham J C, Murch M G, Temple-Smith P, Dawes C J (1991) Friction stir butt welding. UK Patent 9125978.8Google Scholar
  3. 3.
    Thomas W M, Threadgill P L, Nicholas E D (1999) Feasibility of friction stir welding steel. Sci Technol Weld Join 4(6):365–372CrossRefGoogle Scholar
  4. 4.
    Lohwasser D, Zhan C (2010) Series in Welding and Other Joining Technologies Friction stir welding: from basics to applications. Woodhead publ. & CRC, CambridgeGoogle Scholar
  5. 5.
    Firouzdor V, Kou S D (2010) Formation of Liquid and Intermetallics in Al-to-Mg Friction Stir Welding. Metall Mater Trans A 41(12):3238–3251CrossRefGoogle Scholar
  6. 6.
    Mironov S, Inagaki K, Sato Y S, Kokawa H (2014) Development of grain structure during friction-stir welding of Cu–30Zn brass. Phil Mag 94(27):3137–3148CrossRefGoogle Scholar
  7. 7.
    Ramirez A J, Juhas M C (2003) Microstructural evolution in Ti-6Al-4V friction stir welds. Mater Sci Forum 426-432:2999–3004CrossRefGoogle Scholar
  8. 8.
    Sorensen C D, Nelson T W, Strand S, Johns C, Christensen J (2001) Joining of thermoplastics with friction stir welding Proceedings of the ANTEC 2001 Conference, pp 1246–1250Google Scholar
  9. 9.
    Collier M, Steel R, Nelson T, Sorensen C, Packer S (2003) Grade development of polycrystalline cubic boron nitride for friction stir processing of ferrous alloys. Mater Sci Forum 426–432:3011–3016CrossRefGoogle Scholar
  10. 10.
    Sorensen C D, Nelson T W, Packer S M, Steel R J (2004) Innovative technology applications in FSW of high softening temperature materials Proceedings of the 5th International Symposium Friction stir welding, Metz, pp 14–16Google Scholar
  11. 11.
    Chiteka K (2013) Friction Stir Welding of steels: A Review Paper. IOSR J Mech Civil Eng 9(3):16–20CrossRefGoogle Scholar
  12. 12.
    Pradeep A (2012) A review on friction stir welding of steel. Int J Eng Res Development 3(11):75–91Google Scholar
  13. 13.
    Fujii H, Cui L, Tsuji N, Maeda M, Nakata K, Nogi K (2006) Friction stir welding of carbon steels. Mat Sci Eng a-Struct 429(1–2):50–57CrossRefGoogle Scholar
  14. 14.
    Sato Y S, Yamanoi H, Kokawa H, Furuhara T (2007) Microstructural evolution of ultrahigh carbon steel during friction stir welding. Scr Mater 57(6):557–560CrossRefGoogle Scholar
  15. 15.
    Cui L, Fujii H, Tsuji N, Nogi K (2007) Friction stir welding of a high carbon steel. Scr Mater 56 (7):637–640CrossRefGoogle Scholar
  16. 16.
    Sato Y S, Yamanoi H, Kokawa H, Furuhara T (2008) Characteristics of microstructure in ultrahigh carbon steel produced during friction stir welding. ISIJ Inter 48(1):71–76CrossRefGoogle Scholar
  17. 17.
    Choi D H, Lee C Y, Ahn B W, Choi J H, Yeon Y M, Song K, Hong S G, Lee W B, Kang K B, Jung S B (2011) Hybrid friction stir welding of High-Carbon steel. J Mater Sci Technol 27(2):127–130CrossRefGoogle Scholar
  18. 18.
    Sharma G, Dwivedi D K (2016) Study on microstructure and mechanical properties of dissimilar steel joint developed using friction stir welding. Int J Adv Manuf Technol 88(5–8):1299–1307Google Scholar
  19. 19.
    Morisada Y, Lei Z, Fujii H, Matsushita M, Ikeda R (2016) Effect of Deformation Resistance of Steel on Material Flow in Friction Stir Welding – In-situ Observation by X-ray Radiography–. Tetsu-to-Hagané, 102(2):74–79CrossRefGoogle Scholar
  20. 20.
    Cho H H, Hong S T, Roh J H, Choi H S, Kang S H, Steel R J, Han H N (2013) Three-dimensional numerical and experimental investigation on friction stir welding processes of ferritic stainless steel. Acta Mater 61 (7):2649–2661CrossRefGoogle Scholar
  21. 21.
    Colegrove P A, Shercliff H R (2004) Two-dimensional CFD modelling of flow round profiled FSW tooling. Sci Technol Weld Join 9(6):483–492CrossRefGoogle Scholar
  22. 22.
    Colegrove P A, Shercliff H R (2005) 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile. J Mater Process Technol 169(2):320–327CrossRefGoogle Scholar
  23. 23.
    Kim D, Badarinarayan H, Kim J H, Kim C, Okamoto K, Wagoner R H, Chung K (2010) Numerical simulation of friction stir butt welding process for AA5083-h18 sheets. European J Mech A-Solids 29 (2):204–215CrossRefGoogle Scholar
  24. 24.
    Liao T W, Daftardar S (2009) Model based optimisation of friction stir welding processes. Sci Technol Weld Join 14(5):426– 435CrossRefGoogle Scholar
  25. 25.
    Cho J H, Boyce D E, Dawson P R (2005) Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Mat Sci Eng A-Struct 398(1-2):146–163CrossRefGoogle Scholar
  26. 26.
    Darvazi A R, Iranmanesh M (2014) Thermal modeling of friction stir welding of stainless steel 304L. Int J Adv Manuf Technol 75(9–12):1299–1307CrossRefGoogle Scholar
  27. 27.
    Toumpis A I, Galloway A M, Arbaoui L, Poletz N (2014) Thermomechanical deformation behaviour of DH36 steel during friction stir welding by experimental validation and modelling. Sci Technol Weld Join 19 (8):653–663CrossRefGoogle Scholar
  28. 28.
    Nandan R, Roy G G, Lienert T J, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55(3):883–895CrossRefGoogle Scholar
  29. 29.
    Selvaraj M, Murali V, Koteswara Rao S R (2013) Thermal model for friction stir welding of mild steel. Multidiscipline Mod Mater Struct 9(1):49–61CrossRefGoogle Scholar
  30. 30.
    Haghpanahi M, Salimi S, Bahemmat P, Sima S (2013) 3-D transient analytical solution based on Green’s function to temperature field in friction stir welding. Appl Math Mod 37(24):9865–9884CrossRefGoogle Scholar
  31. 31.
    Schmidt H, Hattel J, Wert J (2004) An analytical model for the heat generation in friction stir welding. Mod Sim Mater Sci Eng 12(1):143–157CrossRefGoogle Scholar
  32. 32.
    Vilaça P, Quintino L, dos Santos J F (2005) iSTIR - Analytical thermal model for friction stir welding. J Mater Proc Technol 169(3):452–465CrossRefGoogle Scholar
  33. 33.
    Heurtier P, Jones M J, Desrayaud C, Driver J H, Montheillet F, Allehaux D (2006) Mechanical and thermal modelling of friction stir welding. J Mater Proc Technol 171(3):348–357CrossRefGoogle Scholar
  34. 34.
    Arora A, DebRoy T, Bhadeshia H K D H (2011) Back-of-the-envelope calculations in friction stir welding – Velocities, peak temperature, torque, and hardness. Acta Mater 59(5):2020– 2028CrossRefGoogle Scholar
  35. 35.
    Ferrer L., Hernández C., Vargas aguilar R O (2015) Selected topics of computational and experimental fluid mechanics. In: Klapp J, Ruíz chavarría G, Medina Ovando A, López Villa A, Sigalotti G L D (eds) An analytical solution for friction stir welding of an AISI 1018 steel. Springer, Cham, pp 473–480Google Scholar
  36. 36.
    Nandan R, Debroy T, Bhadeshia H (2008) Recent advances in friction-stir welding – Process, weldment structure and properties. Prog Mater Sci 53(6):980–1023CrossRefGoogle Scholar
  37. 37.
    Grujicic M, Yavari R, Ramaswami S, Snipes J, Galgalikar R (2015) Computational analysis of inter-material mixing and weld-flaw formation during dissimilar-filler-metal friction stir welding (FSW). Multidiscipline Mod Mater Struct 11(3):322–349CrossRefGoogle Scholar
  38. 38.
    Kuykendall K, Nelson T, Sorensen C (2013) On the selection of constitutive laws used in modeling friction stir welding. Int J Mach Tools Manuf 74:74–85CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Chen J T (2008) The simulation of material behaviors in friction stir welding process by using rate-dependent constitutive model. J Mater Sci 43(1):222–232MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lienert T J, Stellwag W L J, Grimmett B B, Warke R W (2003) Friction Stir Welding Studies on Mild Steel - Process results, microstructures, and mechanical properties are reported. Weld J (January):1s-9sGoogle Scholar
  41. 41.
    North T H, Bendzsak G J, Smith C (2000) Material properties relevant to 3-D FSW modeling 2nd International Symposium on Friction Stir Welding, pp 1–13Google Scholar
  42. 42.
    Bauccio M (1993) ASM Metals reference book, 3rd edn. ASM International, Materials ParkGoogle Scholar
  43. 43.
    Moal A, Massoni E (1995) Finite element simulation of the inertia welding of two similar parts. Eng Computations 12(6):497–512CrossRefMATHGoogle Scholar
  44. 44.
    Perzyna P Chernyi G G, Dryden H L, Germain P et al (eds) (1966) Fundamental problems in viscoplasticity. Academic Press and Berkeley Square House, LondonGoogle Scholar
  45. 45.
    Bathe K-J (1996) Finite element procedures. Prentice-HallGoogle Scholar
  46. 46.
    Durst F (2008) Fluid mechanics: an introduction to the theory of fluid flows springer berlin heidelberg. Berlin, HeidelbergCrossRefGoogle Scholar
  47. 47.
    Hernandez C A, Medina S F, Ruiz J (1996) Modelling austenite flow curves in low alloy and microalloyed steels. Acta Mater 44(1):155–163CrossRefGoogle Scholar
  48. 48.
    Medina S F, Hernandez C A (1996) General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels. Acta Mater 44(1):137– 148CrossRefGoogle Scholar
  49. 49.
    Kozlowski P F, Thomas B G, Azzi J A, Hao W (1992) Simple constitutive-equations for steel at high-temperature. Metall Trans A 23(3):903–918CrossRefGoogle Scholar
  50. 50.
    Schmidt H N B (2010) Modelling thermal properties in friction stir welding. Lohwasser, D, Chen, Z (eds.) Friction stir welding - from basics to applications. Woodhead Publishing and CRC press LLCGoogle Scholar
  51. 51.
    Schmidt H B, Hattel J H (2008) Thermal modelling of friction stir welding. Scr Mater 58(5):332–337CrossRefGoogle Scholar
  52. 52.
    Hirt C W, Nichols B D (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comp Physics 39(1):201–225CrossRefMATHGoogle Scholar
  53. 53.
    Patankar S (1980) Numerical heat transfer and fluid flow. CRC PressGoogle Scholar
  54. 54.
    Song M, Kovacevic R (2003) Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int J Mach Tool Manuf 43(6):605–615CrossRefGoogle Scholar
  55. 55.
    Al-Badour F, Merah N, Shuaib A, Bazoune A (2014) Thermo-mechanical finite element model of friction stir welding of dissimilar alloys. Int J Adv Manuf Technol 72(5-8):607–617CrossRefGoogle Scholar
  56. 56.
    Alfaro I, Fratini L, Cueto E, Chinesta F (2008) Numerical simulation of friction stir welding by natural element methods. Int J Mater Form 1(1):1079–1082CrossRefGoogle Scholar
  57. 57.
    Padmanaban R, Kishore V R, Balusamy V (2014) Numerical simulation of temperature distribution and material flow during friction stir welding of dissimilar aluminum alloys. Procedia Eng 97:854–863CrossRefGoogle Scholar
  58. 58.
    Kishore V R, Arun J, Padmanabhan R, Balasubramanian V (2015) Parametric studies of dissimilar friction stir welding using computational fluid dynamics simulation. Inter J Adv Manuf Technol 80:91–98CrossRefGoogle Scholar
  59. 59.
    Bendzsak G J, North T H, Li Z (1997) Numerical model for steady-state flow in friction welding. Acta Mater 45(4):1735–1745CrossRefGoogle Scholar
  60. 60.
    Nandan R, Roy G G, Lienert T J, DebRoy T (2006) Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Join 11(5):526– 537CrossRefGoogle Scholar
  61. 61.
    Choi D H, Lee C Y, Ahn B W, Yeon Y M, Park S H C, Sato Y S, Kokawa H, Jung S B (2010) Effect of fixed location variation in friction stir welding of steels with different carbon contents. Sci Technol Weld Join 15(4):299–304CrossRefGoogle Scholar
  62. 62.
    Choi D H, Ahn B W, Yeon Y M, Park S H C, Sato Y S, Kokawa H, Jung S B (2011) Microstructural characterizations following friction stir welding of dissimilar alloys of low- and High-Carbon steels. Mater Trans 52 (7):1500–1505CrossRefGoogle Scholar
  63. 63.
    Buzolin R H, Francisco B R, da Silva E P, Pereira V F, Ramirez Londono A J, Maluf O, Pinto H C (2017) Ionescu dissimilar friction stir welding of HSLA steel to austenitic High-Mn TRIP steel, Trans Tech Publications Inc. Sommitsch C, Ionescu M, Mishra B, Kozeschnik E, Chandra T (eds.) Mater Sci Forum 879:2306–2311Google Scholar
  64. 64.
    He X, DebRoy T, Fuerschbach P W (2004) Composition change of stainless steel during microjoining with short laser pulse. J Appl Phys 96(8):4547–4555CrossRefGoogle Scholar
  65. 65.
    Nunes Jr A C (2001) Wiping Metal Transfer in Friction Stir Welding 2001 TMS Annual Automotive Alloys and Joining of Aluminum, New Orleans, LA, USA 1-15 Feb 2001Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • C. A. Hernández
    • 1
  • V. H. Ferrer
    • 2
  • J. E. Mancilla
    • 1
  • L. C. Martínez
    • 1
  1. 1.Instituto Politécnico NacionalMÉXICO, ESIME U AzcapotzalcoCiudad de MéxicoMéxico
  2. 2.Instituto Politécnico NacionalMÉXICO, ESIME ZacatencoCiudad de MéxicoMéxico

Personalised recommendations