Advertisement

A review on benchmark artifacts for evaluating the geometrical performance of additive manufacturing processes

  • Lara Rebaioli
  • Irene Fassi
ORIGINAL ARTICLE

Abstract

In recent years, additive manufacturing (AM) has undergone a rapid growth, therefore several processes based on different working principles (e.g. photopolymerization, sintering, extrusion, material jetting, etc) are now available and allow to manufacture parts using a wide range of materials. Consequently, the so-called benchmark artifacts are necessary to assess the capabilities and limitations of each AM process or to compare the performance of different processes. This paper focuses on the benchmark artifacts for evaluating the geometrical performance of AM processes and proposes an extensive review of the available literature, analyzing the design of such test parts in detail. The investigated test parts are classified according to the process aspect that they are able to evaluate (dimensional/geometrical accuracy, repeatability, minimum feature size) and the combination AM process/materials for which they have been used. In addition, the paper draws a summary of guidelines to design benchmark artifacts for geometrical performance evaluation.

Keywords

Additive manufacturing Rapid prototyping Performance evaluation Benchmarking Test artifact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ISO/ASTM 52900:2015. Additive manufacturing—General principles—TerminologyGoogle Scholar
  2. 2.
    Mahesh M (2004) Rapid prototyping and manufacturing benchmarking. PhD Thesis, National University of SingaporeGoogle Scholar
  3. 3.
    Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295. doi: 10.1016/j.matdes.2009.06.016 CrossRefGoogle Scholar
  4. 4.
    Garg A, Bhattacharya A, Batish A (2015) Failure investigation of fused deposition modelling parts fabricated at different raster angles under tensile and flexural loading. Proc Inst Mech Eng Part B - J Eng Manuf. doi: 10.1177/0954405415617447
  5. 5.
    Basile B, Pagano C, Fassi I (2016) Micro-FDM process capability and comparison with micro-injection moulding. Proceedings of 32th international Conference of the Polymer Processing Society (PPS-32), Lyon, France.Google Scholar
  6. 6.
    Kim GD, Oh YT (2008) A benchmark study on rapid prototyping processes and machines: quantitative comparisons of mechanical properties, accuracy, roughness, speed, and material cost. Proc Inst Mech Eng Part B - J Eng Manuf 222(2):201–215. doi: 10.1243/09544054JEM724 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Perez MA, Ramos J, Espalin D, Hossain MS, Wicker RB (2013) Ranking model for 3D printers. Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1048-1065Google Scholar
  8. 8.
    Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30(10):4243–4252. doi: 10.1016/j.matdes.2009.04.030 CrossRefGoogle Scholar
  9. 9.
    Senthilkumaran K, Pandey PM, Rao PVM (2012) Statistical modeling and minimization of form error in SLS prototyping. Rapid Prototyping J 18(1):38–48. doi: 10.1108/13552541211193485 CrossRefGoogle Scholar
  10. 10.
    Gurrala PK, Regalla SP (2014) Multi-objective optimisation of strength and volumetric shrinkage of FDM parts: a multi-objective optimization scheme is used to optimize the strength and volumetric shrinkage of FDM parts considering different process parameters. Virtual and Physical Prototyping 9(2):127–138. doi: 10.1080/17452759.2014.898851 CrossRefGoogle Scholar
  11. 11.
    Moylan S, Slotwinski J, Cooke A, Jurrens K, Donmez MA (2012) Proposal for a standardized test artifact for additive manufacturing machines and processes Proceedings of the 23rd Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 902-920Google Scholar
  12. 12.
    Moylan S, Slotwinski J, Cooke A, Jurrens K, Donmez MA (2014) An additive manufacturing test artifact. J Res Natl Inst Stand Technol 119:429–459. doi: 10.6028/jres.119.017 CrossRefGoogle Scholar
  13. 13.
    Kruth JP (1991) Material increase manufacturing by rapid prototyping techniques. CIRP Ann - Manuf Technol 40(2):603–614CrossRefGoogle Scholar
  14. 14.
    Wohlers T (1992) Chrysler compares rapid prototyping systems. Comput - Aided Eng 11(10):84–91Google Scholar
  15. 15.
    Van Putte DA (1992) A brief benchmarking study of rapid prototyping processes. Proceedings of the 3rd International Conference on Rapid Prototyping, Dayton (OH), USAGoogle Scholar
  16. 16.
    Lart G (1992) Comparison of rapid prototyping systems. Proceedings of the 1st European Conference on Rapid Prototyping, Nottingham, UK, pp 6–7Google Scholar
  17. 17.
    Childs THC, Juster NP (1994) Linear and geometric accuracies from layer manufacturing. CIRP Ann - Manuf Technol 43(1):163–166CrossRefGoogle Scholar
  18. 18.
    Aubin RF (1994) A world wide assessment of rapid prototyping technologies. United Technologies Research Center Report, East Hartford, CT, Report, pp 94–13Google Scholar
  19. 19.
    Jayaram D, Bagchi A, Jara-Almonte CC, O'Reilly S (1994) Benchmarking of rapid prototyping systems—beginning to set standards. Proceedings of the 5th Annual international solid freeform fabrication Symposium, Austin (TX), USA, pp 146–153Google Scholar
  20. 20.
    Iuliano L, Ippolito R, De Filippi A (1994) A new user part for performances evaluation of rapid prototyping systems. Proceedings of 3rd European Conference on Rapid Prototyping and Manufacturing, University of Nottingham, Nottingham, UK, pp 327–339Google Scholar
  21. 21.
    Ippolito R, Iuliano L, Gatto A (1995) Benchmarking of rapid prototyping techniques in terms of dimensional accuracy and surface finish. CIRP Ann - Manuf Technol 44(1):157–160. doi: 10.1016/S0007-8506(07)62296-3 CrossRefGoogle Scholar
  22. 22.
    Reeves PE, Cobb RC (1995) Surface deviation modeling of LMT processes—a comparative analysis. Proceedings of the 5th European Conference on Rapid Prototyping and Manufacturing, Helsinki, Finland, pp 59–77Google Scholar
  23. 23.
    Shellabear M (1999) Benchmark study of accuracy and surface quality in RP models. Brite/EuRam Report BE-2051, task 4(2)Google Scholar
  24. 24.
    Loose K, Nakagawa T (1998) Benchmarking various methods of layer manufacturing systems in rapid prototyping. 15th Rapid Prototyping Symposium, Japan Society of Die and Mould Technology (JSDMT) pp 90–100Google Scholar
  25. 25.
    Zhou JG, Herscovici D, Chen CC (2000) Parametric process optimization to improve the accuracy of rapid prototyped stereolithography parts. Int J Mach Tools Manuf 40(3):363–379. doi: 10.1016/S0890-6955(99)00068-1 CrossRefGoogle Scholar
  26. 26.
    Xu F, Wong YS, Loh HT (2001) Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. J Manuf Syst 19(5):283–296. doi: 10.1016/S0278-6125(01)89001-4 CrossRefGoogle Scholar
  27. 27.
    Perez CL (2002) Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes. Int J Prod Res 40(12):2865–2881. doi: 10.1080/00207540210146099 CrossRefGoogle Scholar
  28. 28.
    Byun HS, Lee KH (2003) Design of a new test part for benchmarking the accuracy and surface finish of rapid prototyping processes. International Conference on Computational Science and Its Applications—ICCSA 2003, Springer Berlin Heidelberg, pp 731–740. doi:  10.1007/3-540-44842-X_74
  29. 29.
    Dimitrov D, Van Wijck W, Schreve K, De Beer N, Meljer J (2003) An investigation of the capability profile of the three dimensional printing process with an emphasis on the achievable accuracy. CIRP Ann - Manuf Technol 52(1):189–192. doi: 10.1016/S0007-8506(07)60562-9 CrossRefGoogle Scholar
  30. 30.
    Dimitrov D, Van Wijck W, Schreve K, De Beer N (2006) Investigating the achievable accuracy of three dimensional printing. Rapid Prototyping J 12(1):42–52. doi: 10.1108/13552540610637264 CrossRefGoogle Scholar
  31. 31.
    Grimm T (2003) Fused deposition modeling: a technology evaluation. Time-compression technologies 11(2):1–6Google Scholar
  32. 32.
    Mahesh M, Wong YS, Fuh JYH, Loh HT (2004) Benchmarking for comparative evaluation of RP systems and processes. Rapid Prototyping J 10(2):123–135. doi: 10.1108/13552540410526999 CrossRefGoogle Scholar
  33. 33.
    Mahesh M, Wong YS, Fuh JYH, Loh HT (2006) A six-sigma approach for benchmarking of RP&M processes. Int J Adv Manuf Technol 31(3–4):374–387. doi: 10.1007/s00170-005-0201-z CrossRefGoogle Scholar
  34. 34.
    Kruth JP, Vandenbroucke B, Vaerenbergh VJ, Mercelis P (2005) Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. Proceedings of the International Conference on Polymers & Moulds Innovations (PMI), Gent, BelgiumGoogle Scholar
  35. 35.
    Castillo L (2005) Study about the rapid manufacturing of complex parts of stainless steel and titanium. TNO report with the collaboration of AIMMEGoogle Scholar
  36. 36.
    Pennington RC, Hoekstra NL, Newcomer JL (2005) Significant factors in the dimensional accuracy of fused deposition modelling. Proc Inst Mech Eng Part E - J Process Mech Eng 219(1):89–92. doi: 10.1243/095440805X6964 CrossRefGoogle Scholar
  37. 37.
    Sercombe TB, Hopkinson N (2006) Process shrinkage and accuracy during indirect laser sintering of aluminium. Adv Eng Mater 8(4):260–264. doi: 10.1002/adem.200500265 CrossRefGoogle Scholar
  38. 38.
    Abdel Ghany K, Moustafa SF (2006) Comparison between the products of four RPM systems for metals. Rapid Prototyping J 12(2):86–94. doi: 10.1108/13552540610652429 CrossRefGoogle Scholar
  39. 39.
    Hanumaiah N, Ravi B (2007) Rapid tooling form accuracy estimation using region elimination adaptive search based sampling technique. Rapid Prototyping J 13(3):182–190. doi: 10.1108/13552540710750933 CrossRefGoogle Scholar
  40. 40.
    Campanelli SL, Cardano G, Giannoccaro R, Ludovico AD, Bohez EL (2007) Statistical analysis of the stereolithographic process to improve the accuracy. Comput - Aided Des 39(1):80–86. doi: 10.1016/j.cad.2006.10.003 CrossRefGoogle Scholar
  41. 41.
    Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13(4):196–203. doi: 10.1108/13552540710776142 CrossRefGoogle Scholar
  42. 42.
    Scaravetti D, Dubois P, Duchamp R (2008) Qualification of rapid prototyping tools: proposition of a procedure and a test part. Int J Adv Manuf Technol 38(7–8):683–690. doi: 10.1007/s00170-007-1129-2 CrossRefGoogle Scholar
  43. 43.
    Pessard E, Mognol P, Hascoët JY, Gerometta C (2008) Complex cast parts with rapid tooling: rapid manufacturing point of view. Int J Adv Manuf Technol 39(9–10):898–904. doi: 10.1007/s00170-007-1281-8 CrossRefGoogle Scholar
  44. 44.
    Kotlinski J, Kesy Z, Kesy A, Jackson M, Parkin R (2009) Dimensional deviations of machine parts produced in laser sintering technology. Int J Rapid Manuf 1(1):88–98. doi: 10.1504/IJRapidM.2009.028933 CrossRefGoogle Scholar
  45. 45.
    Espalin D, Medina F, Arcaute K, Zinniel B, Hoppe T, Wicker R (2009) Effects of vapor smoothing on ABS part dimensions. Proceedings of the Rapid 2009 Conference & exposition, Schaumburg (IL), USAGoogle Scholar
  46. 46.
    Choi JW, Medina F, Kim C, Espalin D, Rodriguez D, Stucker B, Wicker R (2011) Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility. J Mater Process Technol 211(3):424–432. doi: 10.1016/j.jmatprotec.2010.10.019 CrossRefGoogle Scholar
  47. 47.
    Bakar NSA, Alkahari MR, Boejang H (2010) Analysis on fused deposition modelling performance. Zhejiang Univ-Sci A (Appl Phys & Eng) 11(12):972–977. doi: 10.1631/jzus.A1001365 CrossRefGoogle Scholar
  48. 48.
    Cooke AL, Soons JA (2010) Variability in the geometric accuracy of additively manufactured test parts. Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1–12Google Scholar
  49. 49.
    Campanelli SL, Angelastro A, Ludovico AD, Contuzzi N (2010) Capabilities and performances of the selective laser melting process. In: New trends in technologies: devices, computer, communication and Industrial systems, Italy: INTECH open access PublisherGoogle Scholar
  50. 50.
    Delgado J, Ciurana J, Reguant C, Cavallini B (2010) Studying the repeatability in DMLS technology using a complete geometry test part. Proceedings of the 4th International Conference on Advanced Research in Virtual and Physical Prototyping, Leiria, PortugalGoogle Scholar
  51. 51.
    Brajlih T, Valentan B, Balic J, Drstvensek I (2011) Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyping J 17(1):64–75. doi: 10.1108/13552541111098644 CrossRefGoogle Scholar
  52. 52.
    Johnson WM, Rowell M, Deason B, Eubanks M (2011) Benchmarking evaluation of an open source fused deposition modeling additive manufacturing system. Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 197–211Google Scholar
  53. 53.
    Johnson WM, Rowell M, Deason B, Eubanks M (2014) Comparative evaluation of an open-source FDM system. Rapid Prototyping J 20(3):205–214. doi: 10.1108/RPJ-06-2012-0058 CrossRefGoogle Scholar
  54. 54.
    Saqib S, Urbanic J (2012) An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts. Enabling Manufacturing Competitiveness and Economic Sustainability, Springer Berlin, pp 293–298Google Scholar
  55. 55.
    Fahad M, Hopkinson N (2012) A new benchmarking part for evaluating the accuracy and repeatability of additive manufacturing (AM) processes. 2nd International Conference on Mechanical, Production and Automobile Engineering (ICMPAE 2012), Singapore, pp 28–29Google Scholar
  56. 56.
    Williams CB, Seepersad CC (2012) Design for additive manufacturing curriculum: a problem-and project-based approach. Proceedings of the 23rd Annual international solid freeform fabrication Symposium, Austin (TX), USA, pp 81–92Google Scholar
  57. 57.
    Roberson DA, Espalin D, Wicker RB (2013) 3D printer selection: a decision-making evaluation and ranking model. Virtual and Physical Prototyping 8(3):201–212. doi: 10.1080/17452759.2013.830939 CrossRefGoogle Scholar
  58. 58.
    Islam MN, Boswell B, Pramanik A (2013) An investigation of dimensional accuracy of parts produced by three-dimensional printing. Proceedings of the World Congress on Engineering 1:3–5Google Scholar
  59. 59.
    Cruz Sanchez FA, Boudaoud H, Muller L, Camargo M (2014) Towards a standard experimental protocol for open source additive manufacturing. Virtual and Physical Prototyping 9(3):151–167. doi: 10.1080/17452759.2014.919553 CrossRefGoogle Scholar
  60. 60.
    Hao B, Korkmaz E, Bediz B, Ozdoganlar OB (2014) A novel test artifact for performance evaluation of additive manufacturing processes. American Society for Precision Engineering Conference.Google Scholar
  61. 61.
    Yang L, Anam MA (2014) An investigation of standard test part design for additive manufacturing. Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 901-922Google Scholar
  62. 62.
    Jared BH, Tran HD, Saiz D, Boucher CL, Dinardo JE (2014) Metrology for additive manufacturing parts and processes. Spring Topical Meeting 57Google Scholar
  63. 63.
    Yasa E, Demir F, Akbulut G, Cızıoğlu N, Pilatin S (2014) Benchmarking of different powder-bed metal fusion processes for machine selection in additive manufacturing. Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 390–403Google Scholar
  64. 64.
    Meisel NA, Williams CB (2014) Design for Additive Manufacturing: an investigation of key manufacturing considerations in multi-material PolyJet 3D printing. Proceedings of the 25th Annual international solid freeform fabrication Symposium, Austin (TX), USA, pp 747–763Google Scholar
  65. 65.
    Meisel NA, Williams CB (2015) An investigation of key design for additive manufacturing constraints in multimaterial three-dimensional printing. J Mech Des 137(11):111406. doi: 10.1115/1.4030991 CrossRefGoogle Scholar
  66. 66.
    Lanzotti A, Del Giudice DM, Lepore A, Staiano G, Martorelli M (2015) On the geometric accuracy of RepRap open-source three-dimensional printer. J Mech Des 137(10):101703. doi: 10.1115/1.4031298 CrossRefGoogle Scholar
  67. 67.
    Lanzotti A, Martorelli M, Staiano G (2015) Understanding process parameter effects of RepRap open-source three-dimensional printers through a design of experiments approach. J Manuf Sci Eng - Trans ASME 137(1):011017. doi: 10.1115/1.4029045 CrossRefGoogle Scholar
  68. 68.
    Thompson MK, Mischkot M (2015) Design of test parts to characterize micro additive manufacturing processes. Procedia CIRP 34:223–228. doi: 10.1016/j.procir.2015.07.065 CrossRefGoogle Scholar
  69. 69.
    Chang S, Li H, Ostrout N, Jhuria M (2015) Geometric element test targets for visual inference of a printer’s dimension limitations Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1491–1503Google Scholar
  70. 70.
    Decker N, Yee A (2015) A simplified benchmarking model for the assessment of dimensional accuracy in FDM processes. Int J Rapid Manuf 5(2):145–154. doi: 10.1504/IJRAPIDM.2015.073573 CrossRefGoogle Scholar
  71. 71.
    Teeter MG, Kopacz AJ, Nikolov HN, Holdsworth DW (2015) Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications. Proc Inst Mech Eng Part H - J Eng Med 229(1):20–27. doi: 10.1177/0954411914565222 CrossRefGoogle Scholar
  72. 72.
    Fernandez-Vicente M, Canyada M, Conejero A (2015) Identifying limitations for design for manufacturing with desktop FFF 3D printers. Int J Rapid Manuf 5(1):116–128. doi: 10.1504/IJRAPIDM.2015.073551 CrossRefGoogle Scholar
  73. 73.
    Minetola P, Iuliano L, Marchiandi G (2016) Benchmarking of FDM machines through part quality using IT grades. Procedia CIRP 41:1027–1032. doi: 10.1016/j.procir.2015.12.075 CrossRefGoogle Scholar
  74. 74.
    Islam MN, Sacks S (2016) An experimental investigation into the dimensional error of powder-binder three-dimensional printing. Int J Adv Manuf Technol 82(5–8):1371–1380. doi: 10.1007/s00170-015-7482-7 CrossRefGoogle Scholar
  75. 75.
    Islam MN, Gomer H, Sacks S (2016) Comparison of dimensional accuracies of stereolithography and powder binder printing. Int J Adv Manuf Technol:1–11. doi: 10.1007/s00170-016-8988-3
  76. 76.
    Yang H, Lim JC, Liu Y, Qi X, Yap YL, Dikshit V, Yeong WY, Wei J (2016) Performance evaluation of ProJet multi-material jetting 3D printer. Virtual and Physical Prototyping:1–9. doi: 10.1080/17452759.2016.1242915
  77. 77.
    Berger A, Sharon Y, Ashkenazi D, Stern A (2016) Fascicle XII: Welding Equipment and Technology 27:29–37Google Scholar
  78. 78.
    Kniepkamp M, Fischer J, Abele E (2016) Dimensional accuracy of small parts manufactured by micro selective laser melting. Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin (TX), USA, pp 1530–1537Google Scholar
  79. 79.
    Calignano F, Lorusso M, Pakkanen J, Trevisan F, Ambrosio EP, Manfredi D, Fino P (2017) Investigation of accuracy and dimensional limits of part produced in aluminum alloy by selective laser melting. Int J Adv Manuf Technol 88(1):451–458. doi: 10.1007/s00170-016-8788-9 CrossRefGoogle Scholar
  80. 80.
    AIA/NAS, NAS 979 uniform cutting tests—NAS series metal cutting equipment specifications, 1969Google Scholar
  81. 81.
    ISO 286–1:2010—Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes–part 1: basis of tolerances, deviations and fitsGoogle Scholar
  82. 82.
    Richter J, Jacobs P (1992) Accuracy. In: Rapid prototyping & manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers, 287–315Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Consiglio Nazionale delle RicercheInstitute of Industrial Technologies and AutomationMilanItaly
  2. 2.Consiglio Nazionale delle RicercheInstitute of Industrial Technologies and AutomationBariItaly

Personalised recommendations