Advertisement

Heat source model for laser beam welding of steel-aluminum lap joints

  • Anton Evdokimov
  • Katrin Springer
  • Nikolay Doynov
  • Ralf Ossenbrink
  • Vesselin Michailov
ORIGINAL ARTICLE

Abstract

In this study, a three-dimensional thermal conduction model based on the finite element analysis was established to predict a heat distribution during laser welding in overlap configuration of austenitic stainless steel 1.4301 and hardenable aluminum alloy 6016. A hybrid model based on two expanded curve-rotated volumetric heat sources is suggested to capture the complex weld geometry. Since thermal flow in the overlap area is a crucial part of the model, an analytic calculation of a thermal contact conductance between the plates and its subsequent implementation in the FE model through a superposition of two contact surfaces are described in details in this paper. Full thermal cycles, weld shapes, and thus mixing grades were successfully predicted by means of the developed model for different parameter combinations.

Keywords

Laser welding Dissimilar joint Heat source model Finite element analysis Thermal simulation Weld shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research has been funded by the German Federal Ministry of Education and Research in the Framework of the Photonic Research Germany under grant no. 13N12877.

References

  1. 1.
    Sierra G, Peyre P, Deschaux-Beaume F, Stuart D, Fras G (2007) Steel to aluminium key-hole laser welding. Mater Sci Eng A 447(1):197–208CrossRefGoogle Scholar
  2. 2.
    Seffer O, Pfeifer R, Springer A, Kaierle S (2016) Investigations on laser beam welding of different dissimilar joints of steel and aluminum alloys for automotive lightweight construction. Phys Procedia 83:383–395CrossRefGoogle Scholar
  3. 3.
    Wang P, Chen X, Pan Q, Madigan B, Long J (2016) Laser welding dissimilar materials of aluminum to steel: an overview. Int J Adv Manuf Technol 87:3081–3090CrossRefGoogle Scholar
  4. 4.
    Meco S, Pardal G, Ganguly S, Miranda RM, Quintino L, Williams S (2012) Overlap conduction laser welding of aluminium to steel. Int J Adv Manuf Technol 67:647–654CrossRefGoogle Scholar
  5. 5.
    Deflorio A (2008) Distortion simulation of cylindrical body shape during laser beam welding. Shaker Verlag, AachenGoogle Scholar
  6. 6.
    Myhr O, Grong O (1991) Process modelling applied to 6082-T6 aluminum weldments, part i: reaction kinetics. Acta Mater 39:2693–2702CrossRefGoogle Scholar
  7. 7.
    Myhr O, Grong O (1991) Process modelling applied to 6082-T6 aluminum weldments, part II: applications of model. Acta Mater 39:2703–2708CrossRefGoogle Scholar
  8. 8.
    Dreibati O, Ossenbrink R, Doynov N, Michailov V (2012) Physical and numerical simulation of thermo-mechanical properties in the weld heat affected zone of an AlMgSi-alloy. Mater Sci Forum 706-709:1491–1496CrossRefGoogle Scholar
  9. 9.
    Pfenning T, Kloshek A, Ossenbrink R, Doynov N, Michailov V (2009) Experimentelle und numerische Untersuchungen von Al-Stahl Mischverbindungen. DVS Berichte 258:236–240Google Scholar
  10. 10.
    Borrisutthekul R, Yachi T, Miyashita Y, Mutohc Y (2007) Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy. Mater Sci Eng A 467:108–113CrossRefGoogle Scholar
  11. 11.
    Hartel U, Ilin A, Bantel C, Gibmeier J, Michailov V (2016) Finite element modeling for the structural analysis of Al-Cu laser beam welding. Phys Procedia 83:1404–1414CrossRefGoogle Scholar
  12. 12.
    Radaj D (1992) Heat effects of welding. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Schlunder I, Ernst U (1983) Heat Exchanger Design Handbook Volume 5: Physical properties. VDI Verlag, DusseldorfGoogle Scholar
  14. 14.
    Voss O (2000) Untersuchung relevanter Einflussgrossen auf die numerische Schweisssimulation. Dissertation, Brunswick University of TechnologyGoogle Scholar
  15. 15.
    Goldak JA, Mehdi A (2005) Computational welding mechanics. Springer, New YorkGoogle Scholar
  16. 16.
    Siva Shanmugam N, Buvanashekaran G, Sankaranarayanasamy K, Manonmani K (2009) Some studies on temperature profiles in AISI 304 stainless steel sheet during laser beam welding using FE simulation. Int J Adv Manuf Technol 43:78–94CrossRefGoogle Scholar
  17. 17.
    Xu GX, Wu CS, Qin GL, Wang XY, Lin SY (2011) Adaptive volumetric heat source models for laser beam and laser + pulsed GMAW hybrid welding processes. Int J Adv Manuf Technol 57:245–255CrossRefGoogle Scholar
  18. 18.
    Xia P, Yan F, Kong F, Wang C, Liu J, Hu X, Pang S (2014) Prediction of weld shape for fiber laser keyhole welding based on finite element analysis. Int J Adv Manuf Technol 75:363–372CrossRefGoogle Scholar
  19. 19.
    Madhusudana CV (2014) Thermal contact conductance, 2nd edn. Springer, ChamCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Anton Evdokimov
    • 1
  • Katrin Springer
    • 1
  • Nikolay Doynov
    • 1
  • Ralf Ossenbrink
    • 1
  • Vesselin Michailov
    • 1
  1. 1.Brandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations