Advertisement

Delamination assessment of punched holes on laminated composite panels based on the profile measurement technique

  • A. B. Abdullah
  • M. S. M. Zain
  • Z. Samad
ORIGINAL ARTICLE

Abstract

Assembly for a structural material such as a composite panel cannot be avoided. Typically, composite panels are assembled using a fastener through a drilled hole. The main problem of drilling is delamination, which affects the strength of the assembly. In addition, the cost of drilling is high because of repeated regrinding of the drill bit. The main goal of this research is to develop a new method as an alternative to drilling hole preparation. In this study, a new simpler method to determine delamination is based on the profile measurement technique. The 2D profile of the punched hole obtained through the focus variation technique is utilized to determine the delamination. A comparison to the developed measurement method shows a good agreement.

Keywords

Composites panel Punching Drilling Delamination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Botelho EC, Silva RA, Pardini LC, Rezende MC (2006) A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Material Research 9(3):247–256CrossRefGoogle Scholar
  2. 2.
    Edward T (2008) Composite materials revolutionize aerospace engineering. Ingenia 36:24–28Google Scholar
  3. 3.
    Shyha IS, Soo SL, Aspinwall DK, Bradley S, Perry R, Harden P, Dawson S (2011) Hole quality assessment following drilling of metallic-composite stacks. Int J Mach Tools Manuf 51(7–8):569–578CrossRefGoogle Scholar
  4. 4.
    Arul S, Vijayaraghavan L, Malhotra SK, Krishnamurthy R (2006) The effect of vibratory drilling on hole quality in polymeric composites. Int J Mach Tools Manuf 46(3–4):252–259CrossRefGoogle Scholar
  5. 5.
    Kim D, Kwon P, Lantrip J, Beal A, Park KH (2010) Tool wear and hole quality in drilling of composite/titanium stacks with carbide and PCD tools. SAE Technical Paper 2010-01-1868. doi: 10.4271/2010-01-1868
  6. 6.
    Singh I, Bhatnagar N, Viswanath P (2008) Drilling of uni-directional glass fiber reinforced plastics: experimental and finite element study. Mater Des 29:546–553CrossRefGoogle Scholar
  7. 7.
    Debnath K, Singh I, Dvivedi A, Kumar P (2013) In: Attaf B (ed) Recent advances in composite materials for wind turbine blades. Advances in materials science and applications (in English). World Academic Publishing, Hong KongGoogle Scholar
  8. 8.
    Eneyew ED, Ramulu M (2014) Experimental study of surface quality and damage when drilling unidirectional CFRP composites. Journal of Materials Research and Technology 3(4):354–362CrossRefGoogle Scholar
  9. 9.
    Luis MPD, Joao MRST, Antonio GM, Antonio TM, Antonio PMB (2008) Damage analysis of carbon/epoxy plates after drilling. Int J Mater Prod Technol 32(2/3):226–242CrossRefGoogle Scholar
  10. 10.
    Guu YH, Hocheng H, Tai NH, Liu SY (2001) Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites. J Mater Sci 36:2037–2043CrossRefGoogle Scholar
  11. 11.
    Sheikh-Ahmad JY (2016) Hole quality and damage in drilling carbon/epoxy composites by electrical discharge machining. Mater Manuf Process 31(7):941–950CrossRefGoogle Scholar
  12. 12.
    Ali HM, Iqbal A, Hashemipour M (2014) Dimensional accuracy and strength comparison in hole making of GFRP composite using Co2 laser and abrasive water jet technologies. Indian Journal of Engineering & Materials Science 21:189–199Google Scholar
  13. 13.
    Kataria R, Kumar J, Pabla BS (2015) Experimental investigation into the hole quality in ultrasonic machining of WC-Co composite. Mater Manuf Process 30(7):921–933CrossRefGoogle Scholar
  14. 14.
    Ibraheem HMA, Iqbal A, Hashemipour M (2015) Numerical optimization of hole making in GFRP composite using abrasive water jet machining process. J Chin Inst Eng 38(1):66–76CrossRefGoogle Scholar
  15. 15.
    Seif MA, Khashaba UA, Oviedo RR (2007) Measuring delamination in carbon/epoxy composites using a shadow moiré laser based imaging technique. Compos Struct 79(1):113–118CrossRefGoogle Scholar
  16. 16.
    Lahuerta F, Westphal T, Nijssen RPL, Meer FPVD, Sluys LJ (2014) Measuring the delamination length in static and fatigue mode I tests using video image processing. Compos Part B 63:1–7CrossRefGoogle Scholar
  17. 17.
    Miguel PD, Manuel RS, Albuquerque VHC, Marques S, Andrade NG (2014) Drilling damage in composite material. Materials 7(5):3811–3812Google Scholar
  18. 18.
    Albuquerque VHC, Manuel RS, Durão LMP (2010) Evaluation of delamination damages on composite plates using techniques of image processing and analysis and a backpropagation artificial neural network. Journal Composite Material 44(9):1139–1159CrossRefGoogle Scholar
  19. 19.
    Nagarajan VA, Rajadurai JS, Kumar TA (2012) A digital image analysis to evaluate delamination factor for wind turbine composite laminate blade. Composite: Part B 43(8):3153–3159CrossRefGoogle Scholar
  20. 20.
    Tsao CC, Hocheng H (2005) Computerized tomography and C-scan for measuring delamination in the drilling of composite materials using various drills. International journal of machine tools & manufacture design research and application 45(11):1282–1287CrossRefGoogle Scholar
  21. 21.
    Long S, Yao X, Zhang X (2015) Delamination prediction in composite laminates under low-velocity impact. Compos Struct 132:290–298CrossRefGoogle Scholar
  22. 22.
    Dong J, Kim B, Locquet A, McKeon P, Declercq N, Citrin DS (2015) Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Composite Part B 79:667–675CrossRefGoogle Scholar
  23. 23.
    Ramadas C, Balasubramaniam K, Joshi M, Krishnamurthy CV (2011) Characterisation of rectangular type delaminations in composite laminates through B- and D-scan images generated using lamb waves. NDT & E International 44(3):281–289CrossRefGoogle Scholar
  24. 24.
    Pasquali M, Lacarbonara W (2015) Delamination detection in composite laminates using high-frequency P- and S-waves—part I: theory and analysis. Compos Struct. doi: 10.1016/j.compstruct.2015.05.042 (accessed 8 July 2015)
  25. 25.
    Yeum CM, Sohn H, Ihn JB, Lim HJ (2012) Instantaneous delamination detection in a composite plate using a dual piezoelectric transducer network. Compos Struct 94(12):3490–3499CrossRefGoogle Scholar
  26. 26.
    Takeda T, Miura M, Shindo Y, Narita F (2013) Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures. Cryogenics 58:55–61CrossRefGoogle Scholar
  27. 27.
    Huang Y, Liu J, Huang X, Zhang J, Yue G (2015) Delamination and fatigue crack growth behavior in Fiber Metal Laminates (Glare) under single overloads. Int J Fatigue 78:53–60CrossRefGoogle Scholar
  28. 28.
    Sohn H, Swenson ED, Olson SE, DeSimio MP, Dutta D (2011) Delamination detection in composites through guided wave field image processing. Compos Sci Technol 71(9):1250–1256CrossRefGoogle Scholar
  29. 29.
    Campbell FC (2010) Composite materials. ASM International, Metals ParkGoogle Scholar
  30. 30.
    Qiao JW, Ye HY, Yang HJ, Liang W, Xu BS, Liaw PK, Chen MW (2013) Dynamic shear punching of metallic glass matrix composites. Intermetallics 36:31–35CrossRefGoogle Scholar
  31. 31.
    Chan HY, Abdullah AB, Samad Z (2015) Precision punching of hole on composite panels. Indian Journal of Engineering & Materials Sciences 22:641–651Google Scholar
  32. 32.
    Zain MSM, Abdullah AB, Samad Z (2016) Effect of puncher profile on the precision of punched holes on composite panels. Int J Adv Manuf Technol. doi: 10.1007/s00170-016-9339-0
  33. 33.
    Danzl R, Helmli F, Scherer S (2011) Focus variation—a robust technology for high resolution optical 3D surface metrology. Strojniški vestnik – Journal of Mechanical Engineering 57(3):245–256CrossRefGoogle Scholar
  34. 34.
    Helmli F (2011) Focus variation instruments. In: Leach R (ed) Optical measurement of surface topography. Springer, Berlin, pp 131–166CrossRefGoogle Scholar
  35. 35.
    Abdullah AB, Sapuan SM, Samad Z, Khaleed HMT, Aziz NA (2013) Twist springback measurement of autonomous underwater vehicle propeller blade based on profile deviation. Am J Appl Sci 10(5):515–524CrossRefGoogle Scholar
  36. 36.
    Abdullah AB, Sapuan SM, Samad Z (2014) Profile measurement based on focus variation method for geometrical defect evaluation—a case study of cold forged propeller blade. Adv Mech Eng 2014(874691)Google Scholar
  37. 37.
    Abdullah AB, Sapuan SM, Samad Z (2015) Roundness error evaluation of cold embossed hole based on profile measurement technique. Int J Adv Manuf Technol 8:293–300CrossRefGoogle Scholar
  38. 38.
    Tekiner Z, Nalbant M, Gurun H (2006) An experimental study for the effect of different clearances on burr, smooth-sheared and blanking force on aluminium sheet metal. Mater Des 27(10):1134–1138CrossRefGoogle Scholar
  39. 39.
    Chen WC (1997) Some experimental investigations in the drilling of carbon fibre-reinforced plastic (CFRP) composite laminates. Int J Mach Tools Manuf 37:1097–1108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations