Thermal error modeling with dirty and small training sample for the motorized spindle of a precision boring machine

  • Mohan Lei
  • Gedong Jiang
  • Jun Yang
  • Xuesong Mei
  • Ping Xia
  • Liang Zhao
ORIGINAL ARTICLE
  • 84 Downloads

Abstract

Data samples (temperature and thermal drifts) obtained in motorized spindle thermal experiments are usually small and contain much information. Some of the information cannot be fully comprehended by most regression modeling methods when modeling with small training samples; hence, the modeled thermal error predictors can seriously lack robustness, especially for the thermal tilt angle (vital for the boring accuracy of precision boring machines) predictors. To solve this problem, the LS-MLR (least-squares multivariable linear regression), the GA-SVR (genetic algorithm-support vector machine for regression), and the RFR (random forest regression) regression modeling methods are applied to construct the thermal error predictors (models) with the training sample, and the predictors are then evaluated with the testing sample. Comparisons of the three modeling methods are carried out afterwards; it is pointed out that predicting ability of the bias-corrected RFR predictor for thermal elongation is close to the GA-SVR predictor, and as for the thermal pitch and the thermal yaw, predicting ability of the RFR predictors are superior to the LS-MLR and the GA-SVR predictors. Finally, the evaluation results also indicate that the proposed RFR thermal error modeling method is promising to be used in motorized spindle thermal error predicting in machining processes even when the modeling data are poor.

Keywords

Motorized spindle Random forest regression Thermal elongation Thermal tilt angles Thermal error modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mayr J, Jedrzejewski J, Uhlmann E, Donmez MA, Knapp W, Härtigf F, Wendtf K, Moriwakig T, Shoreh P, Schmitti R, Brecher C (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791CrossRefGoogle Scholar
  2. 2.
    Aguirre G, Nanclares APD, Urreta H (2014) Thermal error compensation for large heavy duty milling-boring machines. Euspen Special Interest Group Meeting, Thermal IssuesGoogle Scholar
  3. 3.
    Pahk H, Lee SW (2002) Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error. Int J Adv Manuf Technol 20(7):487–494CrossRefGoogle Scholar
  4. 4.
    Lo CH, Yuan J, Ni J (1995) An application of real-time error compensation on a turning center. Int J Mach Tools Manuf 35(12):1669–1682CrossRefGoogle Scholar
  5. 5.
    Li B, Hong J, Tian X (2016) Generating optimal topologies for heat conduction by heat flow paths identification. Int Commun Heat Mass Transf 75:177–182CrossRefGoogle Scholar
  6. 6.
    Cao H, Zhang X, Chen X (2016) The concept and progress of intelligent spindles: a review. Int J Mach Tools Manuf 112:21–52CrossRefGoogle Scholar
  7. 7.
    Yang J, Mei X, Zhao L, Ma C, Shi H, Feng B (2015) Thermal error compensation on a computer numerical control machine tool considering thermal tilt angles and cutting tool length. Proc Inst Mech Eng B J Eng Manuf 229(1 Suppl):78–97CrossRefGoogle Scholar
  8. 8.
    Han J, Wang L, Cheng N, Wang H, et al (2011) Thermal error modeling of machine tool based on fuzzy c-means cluster analysis. Electronic and Mechanical Engineering and Information Technology, 2011 International Conference on. IEEE, 2333–2336Google Scholar
  9. 9.
    Huang Y, Zhang J, Li X, Tian L (2014) Thermal error modeling by integrating GA and BP algorithms for the high-speed spindle. Int J Adv Manuf Technol 71(71):1–7CrossRefGoogle Scholar
  10. 10.
    Huang CL, Wang CJ (2006) A GA-based feature selection and parameters optimization for support vector machines. Expert Syst Appl 31(2):231–240CrossRefGoogle Scholar
  11. 11.
    Liang R, Ye W, Zhang HH, Yang Q (2012) The thermal error optimization models for CNC machine tools. Int J Adv Manuf Technol 63(9–12):1167–1176Google Scholar
  12. 12.
    Ramesh R, Mannan MA, Poo AN (2002) Support vector machines model for classification of thermal error in machine tools. Int J Adv Manuf Technol 20(2):114–120CrossRefGoogle Scholar
  13. 13.
    Yang J, Feng B, Zhao L, Ma C, Mei X (2014) Thermal error modeling and compensation for a high-speed motorized spindle. Int J Adv Manuf Technol 77(5–8):1005–1017Google Scholar
  14. 14.
    Miao EM, Gong YY, Niu PC, Ji CZ, Chen HD (2013) Robustness of thermal error compensation modeling models of CNC machine tools. Int J Adv Manuf Technol 69(9–12):2593–2603CrossRefGoogle Scholar
  15. 15.
    Larocque MHRD (2012) Robustness of random forests for regression. J Nonparametric Stat 24(4):993–1006MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Li XH (2013) Using“random forest”for classification and regression. Chin J Appl Entomol 50(4):1190–1197Google Scholar
  17. 17.
    Zhang GY, Lu Y (2012) Bias-corrected random forests in regression. J Appl Stat 39(1):151–160MathSciNetCrossRefGoogle Scholar
  18. 18.
    Song J (2015) Bias corrections for random forest in regression using residual rotation. J Korean Stat Soc 44(2):321–326MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gey S, Nedelec E (2005) Model selection for CART regression trees. IEEE Trans Inf Theory 51(2):658–670MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Breiman L, Friedman JH, Olshen R, Stone CJ (1984) Classification and regression trees (CART). Lect Notes Comput Sci 40(3):17–23MATHGoogle Scholar
  21. 21.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefMATHGoogle Scholar
  22. 22.
    B Efron (1992) Bootstrap methods, another look at the jackknife. Springer New YorkGoogle Scholar
  23. 23.
    Smola AJ, Lkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222MathSciNetCrossRefGoogle Scholar
  24. 24.
    Andrew AM (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge university pressGoogle Scholar
  25. 25.
    Ramesh R, Mannan MA, Poo AN, Keerthi SS (2003) Thermal error measurement and modelling in machine tools. Part II. Hybrid Bayesian network—support vector machine model. Int J Mach Tools Manuf 43(4):405–419CrossRefGoogle Scholar
  26. 26.
    Kwok TY (1998) Support vector mixture for classification and regression problems//pattern recognition, 1998. Proceedings. Fourteenth International conference on. IEEE 1:255–258Google Scholar
  27. 27.
    Smola AJ (1996) Regression estimation with support vector learning machines. Master’s thesis, Technische Universit at M unchenGoogle Scholar
  28. 28.
    Michalewicz Z (1996) Genetic algorithms+ data structures = evolution programs. Springer Science & Business MediaGoogle Scholar
  29. 29.
    Zhang L, Jia Z, Wang F et al (2010) A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int J Adv Manuf Technol 51(5):575–586CrossRefGoogle Scholar
  30. 30.
    Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. Found Genet Algorithms 1:69–93MathSciNetGoogle Scholar
  31. 31.
    Johnson RA, Wichern DW (2001) Applied multivariate statistical analysis. Tsinghua University Press, Beijing, pp 321–342Google Scholar
  32. 32.
    J Yang (2014) Research on thermal behaviors and error compensation for machine tools [D]. Xi’an Jiaotong UniversityGoogle Scholar
  33. 33.
    Maj JR, Brence PD, Brown DE (2006) Analysis of robust measures in random forest regression. Dept. Syst. Inf. Eng., Univ. Virginia, Blacksburg, VA, USA, Tech. Rep. sie06_0002Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Mohan Lei
    • 1
  • Gedong Jiang
    • 1
  • Jun Yang
    • 1
    • 2
  • Xuesong Mei
    • 1
  • Ping Xia
    • 1
  • Liang Zhao
    • 1
  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina
  2. 2.State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations