Geometry simulation and evaluation of the surface topography in five-axis ball-end milling

ORIGINAL ARTICLE
  • 143 Downloads

Abstract

Limited by the factors such as dynamic vibrations, cutting heat, and the use of coolant, it is difficult to measure or evaluate the surface quality in real time. Geometry simulation of the surface topography became the main method used in engineering to estimate and control the quality of the surface machining. This paper proposed a new method for geometry simulation and evaluation of a milled surface. Allowing for the coherency in geometric variations management process, the proposed method is developed based on the skin model of a workpiece. To make the simulated surface topography more realistic, the effects of locating errors, spindle errors, geometrical errors of the machine tool, and cutting tool deflections are included. And a new method is adopted to evaluate the milled surface, in which the roughness of the surface is characterized by the modal coefficients, instead of the R a , R z , and R q values. At the end of this paper, measurements and cutting tests are carried out to validate the proposed method.

Keywords

Geometry simulation Surface topography Five-axis ball-end milling Skin model Modal coefficients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harik RF, Gong H, Bernard A (2013) 5-axis flank milling: a state-of-the-art review. Compu. Aided Des. 45(3):796–808CrossRefGoogle Scholar
  2. 2.
    Merchant ME (1945) Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267–275CrossRefGoogle Scholar
  3. 3.
    Merchant ME (1945) Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting. J Appl Phys 16:318–324CrossRefGoogle Scholar
  4. 4.
    Palmer WB, Oxley PLB (1959) Mechanics of orthogonal machining. Proc Inst Mech Eng 173(24):623–654CrossRefGoogle Scholar
  5. 5.
    Lee EH, Shaffer BW (1951) Theory of plasticity applied to the problem of machining. J Appl Phys 18:405–413Google Scholar
  6. 6.
    Martelotti ME (1941) An analysis of the milling process. Trans ASME 63:677–700Google Scholar
  7. 7.
    Armarego EJA, Whitfield RC (1985) Computer based modeling of popular machining operations for force and power prediction. CIRP Ann Manuf Technol 34(1):65–69CrossRefGoogle Scholar
  8. 8.
    Ozturk E, Tunc LT, Budak E (2009) Investigation of lead and tilt angle effects in 5-axis ball-end milling processes. Int J Mach Tools Manuf 49(14):1053–1062CrossRefGoogle Scholar
  9. 9.
    Tunc LT, Budak E (2009) Extraction of 5-axis milling conditions from CAM data for process simulation. Int J Adv Manuf Technol 43(5–6):538–550CrossRefGoogle Scholar
  10. 10.
    Lee P, Altintas Y (1996) Prediction of ball end milling forces from orthogonal cutting data. Int J Mach Toosl Manuf 36(9):1059–1072CrossRefGoogle Scholar
  11. 11.
    Budak E, Altintas Y, Armarego EJA (1996) Prediction of milling force coefficients from orthogonal cutting data. J Manuf Sci Eng 118(2):216–224CrossRefGoogle Scholar
  12. 12.
    Yucesan G, Altintas Y (1996) Prediction of ball end milling forces. J Manuf Sci Eng 118(1):95–103Google Scholar
  13. 13.
    Altintas Y, Lee P (1998) Mechanics and dynamics of ball end milling. J Manuf Sci Eng 120(4):684–692CrossRefGoogle Scholar
  14. 14.
    Altintas Y, Lee P (1996) A general mechanics and dynamics model for helical end mills. CIRP Ann Manuf Technol 45(1):59–64CrossRefGoogle Scholar
  15. 15.
    Altintas Y (2001) Analytical prediction of three dimensional chatter stability in milling. JSME Int J Ser C Mech Syst Mach Elements Manuf 44(3):717–723CrossRefGoogle Scholar
  16. 16.
    Budak E, Ozturk E, Tunc LT (2009) Modeling and simulation of 5-axis milling process. CIRP Ann Manuf Technol 58(1):347–350CrossRefGoogle Scholar
  17. 17.
    Ozturk E, Budak E (2007) Modeling of 5-axis milling process. Mach Sci Technol 11(3):287–311Google Scholar
  18. 18.
    Ozturk E, Budak E (2007) Chatter stability of 5-axis milling using multi-frequency solution. Proc 10th CIRP Int Work Model Mach Oper, Calabria, Italy, 469–476.Google Scholar
  19. 19.
    Leete D (1961) Automatic compensation of alignment errors in machine tools. Int J Mach Tool Des Res 1(4):293–324CrossRefGoogle Scholar
  20. 20.
    Sehultschik R (1977) The components of the volumetric accuracy. CIRP Ann 25(1):223–228Google Scholar
  21. 21.
    Paul RP (1981) Robot manipulators: mathematics, programming, and control. M.I.T. Rress, Cambridge, MAGoogle Scholar
  22. 22.
    Srivastava AK, Veldhuis SC, Elbestawit MA (1995) Modelling geometric and thermal errors in a five axis CNC machine tool. Int J Mach Tools Manufact 35(9):1321–1337CrossRefGoogle Scholar
  23. 23.
    Meng FJ, Chen ZT, Xu RF, Li X (2014) Optimal barrel cutter selection for the CNC machining of blisk. Compu Aided Des 53:36–45CrossRefGoogle Scholar
  24. 24.
    Fan J, Ball A (2014) Flat-end cutter orientation on a quadric in five-axis machining. Compu Aided Des 53:126–138CrossRefGoogle Scholar
  25. 25.
    Bo P, Barto M, Plakhotnik D, Pottmannd H (2016) Towards efficient 5-axis flank CNC machining of free-form surfaces via fitting envelopes of surfaces of revolution. Compu Aided Des 79:1–11CrossRefGoogle Scholar
  26. 26.
    Bedi S, Mann S, Menzel C (2003) Flank milling with flat end milling cutter. Compu Aided Des 35:293–300CrossRefGoogle Scholar
  27. 27.
    Kim YJ, Elber G, Bartoň M, Pottmann H (2015) Precise gouging-free tool orientations for 5-axis CNC machining. Compu Aided Des 58:220–229CrossRefGoogle Scholar
  28. 28.
    Zhao XM, Hu DJ, Zhao GW (2003) Simulation of workpiece surface texture in 5-axis control machining. J Shanghai Jiaotong Univ 37:690–694Google Scholar
  29. 29.
    Liu XB, Soshi M, Sahasrabudhe A, Yamazaki K, Mori M (2006) A geometrical simulation system of ball end finish milling process and its application for the predition of surface micro feature. ASME J Manuf Sci Eng 128:74–85CrossRefGoogle Scholar
  30. 30.
    Sriyotha P, Sahasrabudhe A, Yamazaki K, Mori M (2006) Geometrical modeling of a ball-end finish milling process for a surface finish. Proc Inst Mech Eng, Part B 220:467–477CrossRefGoogle Scholar
  31. 31.
    Antoniadis A, Savakis C, Bialis N, Balouktsis A (2003) Prediction of surface topomorphy and roughness in ball-end milling. Int J Adv Manuf Technol 21:965–971CrossRefGoogle Scholar
  32. 32.
    Arizmendi M, Fernández J, López de Lacalle LN, Lamikiz A, Gil A, Sánchez JA, Campa FJ, Veiga F (2008) Model development for the simulation of surface topography generated by ball end mills, taking into account the tool parallel axis offset. Experimental validation. CIRP Ann Manuf Technol 57(1):101–104CrossRefGoogle Scholar
  33. 33.
    Arizmendi M, Fernández J, Gil A, Veiga F (2006) Effect of tool setting error on the topography of surfaces machined by peripheral milling. Int J Mach Tools Manuf 49:36–59CrossRefGoogle Scholar
  34. 34.
    Arizmendi M, Campa FJ, Fernández J, López de Lacalle LN, Gil A, Bilbao E, Veiga F, Lamikiz A (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Ann Manuf Technol 58(1):93–96CrossRefGoogle Scholar
  35. 35.
    Neto HK, Diniz AE, Pederiva R (2016) Tool life and surface roughness in the milling of curved hardened-steel surfaces. Int J Adv Manuf Technol 87(9–12):2983–2995CrossRefGoogle Scholar
  36. 36.
    Wen L, Li XY, Gao L, Yi WC (2016) Surface roughness prediction in end milling by using predicted point oriented local linear estimation method. Int J Adv Manuf Technol 84(9–12):2523–2535CrossRefGoogle Scholar
  37. 37.
    Mathieu L, Ballu A (2003) Geospelling: a common language for specification and verification to express method uncertainty. The 8th international CIRP seminar on computer aided tolerancing 2003.Google Scholar
  38. 38.
    ISO (2011) Geometrical product specifications (GPS)—general concepts—part 1: model for geometric specification and verification. ISO:17450–17451Google Scholar
  39. 39.
    Schleich B, Anwer N, Mathieu L, Wartzack S (2014) Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering. Compu Aided Des 50:1–15CrossRefGoogle Scholar
  40. 40.
    Slocum AH (1992) Precision machine design. Prentice Hall, Englewood Cliffs, NJ Chapter 2 Google Scholar
  41. 41.
    Cao Y, Li B, Ye X, Guan J, Yang J (2015) Geometrical simulation of multi-scale toleranced surface with consideration of the tolerancing principle. J Comput Inf Sci Eng 15(2):0210061–0210068CrossRefGoogle Scholar
  42. 42.
    Cao Y, Li B, Guan J, Yang J (2015) A point-based variation propagation model for multi-pass machining process. Proc Inst Mech Eng, Part B 229(7):1164–1179CrossRefGoogle Scholar
  43. 43.
    Li B, Cao Y, Ye X, Guan J, Yang J (2015) Multi-scale prediction of the geometrical deviations of the surface finished by 5-axis ball-end milling. Proc Inst Mech Eng, Part B. doi: 10.1177/0954405415606596
  44. 44.
    Budak E, Altintas Y (1995) Modeling and avoidance of static form errors in peripheral milling of plates. Int J Mach Tools Manuf 35(3):459–476CrossRefGoogle Scholar
  45. 45.
    Chen G, Yuan J, Ni J (2001) A displacement measurement approach for machine geometric error assessment. Int J Mach Tools Manuf 41:149–161CrossRefGoogle Scholar
  46. 46.
    Lee K, Lee DM, Yang SH (2012) Parametric modeling and estimation of geometric errors for a rotary axis using double ball-bar. Int J Adv Manuf Technol 62:741–750CrossRefGoogle Scholar
  47. 47.
    Samper S, Formosa F (2007) Form defects tolerancing by natural modes analysis. J Comput Inf Sci Eng 7(1):44–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.Key Laboratory of Reliability Technology for Mechanical and Electrical Product of Zhejiang ProvinceZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Key Laboratory of Advanced Manufacturing Technology of Zhejiang ProvinceZhejiang UniversityHangzhouChina

Personalised recommendations