Thermal cycles and its effect on HAZ microstructure and mechanical properties of 10CrNi3MoV steel in double-sided double arc welding

  • Kang Peng
  • Chunli Yang
  • Sanbao Lin
  • Chenglei Fan
  • Yongqing Han
  • Manpeng Wu
ORIGINAL ARTICLE

Abstract

Thermal cycles of heat-affected zones (HAZs) in double-sided double arc welding (DSDAW) were measured in this study. The microstructure and impact toughness of specimens imposing typical thermal cycles of coarse-grained heat-affected zone (CGHAZ) were analysed by using thermal simulation. The results show that the two arcs influenced each other even during the deposition of the fourth layer in each side. Both of the two arcs could reduce the cooling rate of HAZs. Besides, the heating of the rear arc may make HAZ sustain in bainite transformation interval for a long time and lead to the formation of granular bainite which could deteriorate welding joint. To obtain good toughness of joint by DSDAW, the arc distance during filling pass depositing should be properly enlarged to eliminate granular baintie under the premise that the trough temperature (T t) is higher than 200 °C.

Keywords

Double-sided double arc welding Thermal cycles Granular bainite Impact toughness Arc distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with ethical standards

Conflict of interest

No conflict of interest exits in the submission of this manuscript.

References

  1. 1.
    Gliha V, Vuherer T, Ule B, Vojvodic-Tuma J (2013) Fracture resistance of simulated heat affected zone areas in HSLA structural steel. Sci Technol Weld Join 9(5):399–406. doi: 10.1179/136217104225021698 CrossRefGoogle Scholar
  2. 2.
    Wan XL, Wu KM, Huang G, Nune KC, Li Y, Cheng L (2016) Toughness improvement by Cu addition in the simulated coarse-grained heat-affected zone of high-strength low-alloy steels. Sci Technol Weld Join 21(4):295–302. doi: 10.1080/13621718.2015.1104098 CrossRefGoogle Scholar
  3. 3.
    Wongpanya P, Boellinghaus T, Lothongkum G (2006) Effects of hydrogen removal heat treatment on residual stresses in high strength structural steel welds. Weld World 50:96–103 Special Issue Google Scholar
  4. 4.
    Yue X, Lippold J (2013) Evaluation of heat-affected zone hydrogen-induced cracking in Navy steels. Weld J 92(1):20s–28sGoogle Scholar
  5. 5.
    Devletian JH, Fichtelberg ND (2001) Controlling hydrogen cracking in shipbuilding. Weld J 80(11):46–52Google Scholar
  6. 6.
    Yurioka N, Suzuki H (1990) Hydrogen assisted cracking in C-Mn and low alloy steel weldments. Int Mater Rev 35(1):217–249CrossRefGoogle Scholar
  7. 7.
    Kasuya T, Yurioka N (1995) Determination of necessary preheat temperature to avoid cold cracking under varying ambient-temperature. ISIJ Int 35(10):1183–1189. doi: 10.2355/isijinternational.35.1183 CrossRefGoogle Scholar
  8. 8.
    Roelens JB, Maltrud F, Lu J (1994) Determination of residual stresses in submerged arc multi-pass welds by means of numerical simulation and comparison with experimental measurements. Weld World 33(3):152–159Google Scholar
  9. 9.
    Zhang H, Zhang G, Cai C, Gao H, Wu L (2008) Fundamental studies on in-process controlling angular distortion in asymmetrical double-sided double arc welding. J Mater Process Technol 205(1–3):214–223. doi: 10.1016/j.jmatprotec.2007.11.116 CrossRefGoogle Scholar
  10. 10.
    Chen Y, Yang C, Chen H, Zhang H, Chen S (2015) Microstructure and mechanical properties of HSLA thick plates welded by novel double-sided gas metal arc welding. Int J Adv Manuf Technol 78(1):457–464. doi: 10.1007/s00170-014-6477-0 CrossRefGoogle Scholar
  11. 11.
    Yang C, Zhong J, Chen Y, Chen H, Lin T, Chen S (2014) The realization of no back chipping for thick plate welding. Int J Adv Manuf Technol 74(1):79–88. doi: 10.1007/s00170-014-5927-z CrossRefGoogle Scholar
  12. 12.
    Zhang HJ, Zhang GJ, Wu L (2007) Effects of arc distance on angular distortion by asymmetrical double sided arc welding. Sci Technol Weld Join 12(6):564–571. doi: 10.1179/174329307X227265 MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yang C, Zhang H, Zhong J, Chen Y, Chen S (2014) The effect of DSAW on preheating temperature in welding thick plate of high-strength low-alloy steel. Int J Adv Manuf Technol 71(1):421–428. doi: 10.1007/s00170-013-5287-0 CrossRefGoogle Scholar
  14. 14.
    Vishnu VS, Nadeera M, Joy Varghese VM (2014) Numerical analysis of effect of process parameters on residual stress in a double side TIG welded low carbon steel plate [J]. Dept. of CIM, TKM College of Engg./Kerala University, India. IOSR J Mech Civ Eng (IOSRJMCE) e-ISSN, 2014: 2278-1684Google Scholar
  15. 15.
    Zhou FM, Yu ZS, Feng YH, Huang YC, Qian YY (2003) Numerical analysis of heat transfer process for double sided tungsten inert gas—metal inert gas weld pool. Sci Technol Weld Join 8(1):76–78. doi: 10.1179/136217103225008829 CrossRefGoogle Scholar
  16. 16.
    Caballero FG, Roelofs H, Hasler S, Capdevila C, Chao J, Cornide J, Garcia-Mateo C (2013) Influence of bainite morphology on impact toughness of continuously cooled cementite free bainitic steels. Mater Sci Technol 28(1):95–102. doi: 10.1179/1743284710y.0000000047 CrossRefGoogle Scholar
  17. 17.
    Y-q Z, H-q Z, J-f L, W-m L (2009) Effect of heat input on microstructure and toughness of coarse grain heat affected zone in Nb microalloyed HSLA steels. J Iron Steel Res Int 16(5):73–80. doi: 10.1016/S1006-706X(10)60014-3 CrossRefGoogle Scholar
  18. 18.
    Kunning J, Hongyun Z, Cairu G, Guodong W (2007) Effect of granular bainite in microstructure after welding on impact toughness for micro-calcium steel. Transactions of the China Welding Institution 28(2):95–98 118 Google Scholar
  19. 19.
    Katsumata M, Ishiyama O, Inoue T, Tanaka T (1991) Microstructure and mechanical properties of bainite containing martensite and retained austenite in low carbon HSLA steels. Mater Trans JIM 32(8):715–728CrossRefGoogle Scholar
  20. 20.
    Lippold JC (2014) Welding metallurgy and weldability. WileyGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Kang Peng
    • 1
  • Chunli Yang
    • 1
    • 2
  • Sanbao Lin
    • 1
  • Chenglei Fan
    • 1
  • Yongqing Han
    • 3
  • Manpeng Wu
    • 3
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.726, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Bohai Shipbuilding Group Company LimitedHuludaoChina

Personalised recommendations