An experimental study on preparation of vitrified bond diamond grinding wheel with hollow spherical corundum granules as pore former

  • C. C. Wang
  • F. L. Zhang
  • J. S. Pan
  • J. B. Mao
  • Y. Long
  • H. P. Huang
  • C. Y. Wang
  • H. T. Lin
  • X. Deng
  • S. H. Wu
ORIGINAL ARTICLE
  • 58 Downloads

Abstract

Hollow spherical corundum granules were introduced into a vitrified bond diamond grinding wheel as pore former. The influences of content and particle size of the hollow spherical corundum granules on porosity, flexural strength, and hardness of the vitrified bond diamond wheel samples were systematically investigated. The grinding performance of the designed vitrified bond diamond cup wheel on sapphire and 6H-silicon carbide (SiC) substrates was examined, and morphological properties of the ground surface were evaluated. Results showed that higher content and smaller size of hollow spherical corundum granules could lead to the increase of the porosity and the decrease of flexural strength and hardness. Sapphire and 6H-SiC substrates could be effectively ground by the vitrified bond diamond cup wheel containing 8% hollow spherical corundum granules. During the grinding, although a brittle mode dominated the material removal of two substrates, more ductile removals and lower surface roughness could be identified from 6H-SiC substrate than from sapphire.

Keywords

Hollow spherical corundum granules Vitrified bond Diamond grinding wheel Grinding Sapphire 6H-silicon carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu Y, Lu W, Yuli S, Zuo D (2017) Grinding characteristics in high-speed grinding of boron-diffusion-hardened TC21-DT titanium alloy with vitrified CBN wheel. Int J Adv Manuf Technol 89:1269–1277CrossRefGoogle Scholar
  2. 2.
    Miao WP, Yan N, Zhao YC, Liu MY, Li YP, Wang LP, Qin Z, Tang H, Qiao LN, Wang MZ (2016) Synthesis and application of titania-coated ultrafine diamond abrasive particles. Ceram Int 42:8884–8890CrossRefGoogle Scholar
  3. 3.
    Zhang ZY, Huo FW, Wu YQ, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tools Manuf 51:18–24CrossRefGoogle Scholar
  4. 4.
    Zhao BH, Li ZH, Zhu YM (2013) Effect of polycrystalline mullite fibers on the properties of vitrified bond and vitrified CBN composites. Ceram Int 39:2863–2868CrossRefGoogle Scholar
  5. 5.
    Mao JB, Zhang FL, Liao GC, Zhou YU, Huang HP, Wang CY, Wu SH (2014) Effect of granulated sugar as pore former on the microstructure mechanical properties of the vitrified bond cubic boron nitride grinding wheels. Mater Design 60:328–233CrossRefGoogle Scholar
  6. 6.
    Song DD, Wan L, Liu XP, Hu WD, Xie DL, Wang JS (2016) Effect of hot pressing temperature on microstructure, mechanical properties and grinding performance of vitrified-metal bond diamond wheels. Int J Refract Met and Hard Mater 54:289–294CrossRefGoogle Scholar
  7. 7.
    Beyer P (2005) High-production grinding with vitrified bond superabrasives—HPB technology for vitrified bond CBN wheels. Ind Diam Rev 1:46–48Google Scholar
  8. 8.
    Herman D, Krzos J (2009) Influence of vitrified bond structure on radial wear of CBN grinding wheels. J Mater Process Technol 209:5377–5386CrossRefGoogle Scholar
  9. 9.
    Webster J, Tricard M (2004) Innovations in abrasive products for precision grinding. CIRP Ann-Manuf Technol 53:597–617CrossRefGoogle Scholar
  10. 10.
    Ma CY, Ding WF, Xu JH, Fu YC (2015) Influence of alumina bubble particles on microstructure and mechanical strength in porous Cu-Sn-Ti metals. Mater Design 65:50–56CrossRefGoogle Scholar
  11. 11.
    Tönshoff HK, Karpuschewski B, Mandrysch T, Inasaki I (1998) Grinding process achievements and their consequences on machine tools—challenges and opportunities. CIRP Ann-Manuf Technol 47:651–668CrossRefGoogle Scholar
  12. 12.
    Ding WF, Xu JH, Zhang B, Su HH, Fu YC (2012) Fabrication of composite blocks containing alumina bubble particles for porous CBN abrasive wheels. Key Eng Mater 499:229–234CrossRefGoogle Scholar
  13. 13.
    Ding WF, Xu JH, Chen ZZ, Yang CY, Song CJ, Fu YC (2013) Fabrication and performance of porous metal-bonded CBN grinding wheels using alumina bubble particles as pore-forming agents. Int J Adv Manuf Technol 67:1309–1315CrossRefGoogle Scholar
  14. 14.
    Wellborn VV (1994) Manufacture of alumina bubble to provide favorable properties in uses to 1700 °C. Ind Heat 61:50–52Google Scholar
  15. 15.
    Karlin VV, Khizhnyak NP, Engelbrekht VG, Permikina NM, Evdokimova ZU, Panov GA, Belogrudov AG, Gromov SY (1987) Hollow corundum spheres for high temperature thermal insulation. Refractories 28:386–389CrossRefGoogle Scholar
  16. 16.
    Patten JA, Jacob J (2008) Comparison between numerical simulations and experiments for single-point diamond turning of single-crystal silicon carbide. J Manuf Process 10:28–33CrossRefGoogle Scholar
  17. 17.
    Zolper JC, Skowronski M (2005) Advances in silicon carbide electronics. MRS Bull 30:273–278CrossRefGoogle Scholar
  18. 18.
    Wang QY, Liang ZQ, Wang XB, Zhao WX, Wu YB, Zhou TF (2015) Fractal analysis of surface topography in ground monocrystal sapphire. Appl Surf Sci 327:182–189CrossRefGoogle Scholar
  19. 19.
    Liang ZQ, Wang XB, Wu YB, Xie LJ, Liu ZB, Zhao WX (2012) An investigation on wear mechanism of resin-bonded diamond wheel in elliptical ultrasonic assisted grinding of monocrystal sapphire. J Mater Process Technol 212:868–876CrossRefGoogle Scholar
  20. 20.
    Liang ZQ, Wang XB, Wu YB, Xie LJ, Jiao L, Zhao WX (2013) Experimental study on brittle-ductile transition in elliptical ultrasonic assisted grinding of monocrastal sapphire using single diamond abrasive grain. Int J Mach Tools Manuf 71:41–45CrossRefGoogle Scholar
  21. 21.
    Yan JW, Tan TH (2015) Sintered diamond as a hybrid EDM and grinding tool for the micromachining of single-crystal SiC. CIRP Ann-Manuf Technol 64:221–224CrossRefGoogle Scholar
  22. 22.
    Feng W, Lu WZ, Zhou H, Yang B, Zuo DW (2016) Surface characterization of diamond film tool grinding on the monocrystal sapphire under different liquid environments. Appl Surf Sci 387:784–789CrossRefGoogle Scholar
  23. 23.
    Tomohiro I, Yusuke T, Nobuhide N, Ymchiro S, Toshiya T (2015) Development of grinding technology of monocrystalline silicon carbide by applying nano-particle diamond grinding wheel. Presented in the International Technical Conference on Diamond, Cubic Boron Nitride and their Applications, Inter Tech 2015, Indianapolis, IN, United statesGoogle Scholar
  24. 24.
    Pan JS, Yan QS (2015) Material removal mechanism of cluster magnetorheological effect in plane polishing. Int J Adv Manuf Technol 81(9–12):2017–2026CrossRefGoogle Scholar
  25. 25.
    Luo QF, Lu J, Xu XP (2016) A comparative study on the material removal mechanisms of 6H-SiC polished by semi-fixed and fixed diamond abrasive tools. Wear 350-351:99–106CrossRefGoogle Scholar
  26. 26.
    Luo QF, Lu J, Xu XP (2016) Study on the processing characteristics of SiC and sapphire substrates polished by semi-fixed and fixed abrasive tools. Tribol Int 104:191–203CrossRefGoogle Scholar
  27. 27.
    Yan N, Zhao DP, Wang L, Zou Q, Xi YY, Guo XP, Wang B, Wang ZL, Wang LP, Dai WJ, Wang MZ, Zhao YC (2014) Preparation and sintering of silica-coated ultrafine diamonds vitrified bond composite powders. Int J Refract Met Hard Mater 43:212–215CrossRefGoogle Scholar
  28. 28.
    Graca S, Trabadelo V, Neels A, Kuebler J, Le Nader V, Gamez G, Dobelie M, Wasmer K (2014) Influence of mosaicity on the fracture behavior of sapphire. Acta Mater 67:67–80CrossRefGoogle Scholar
  29. 29.
    Vodenitcharova T, Zhang LC, Zarudi I, Yin Y, Domyo H, Ho T, Sato M (2007) The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks. J Mater Process Technol 194:52–62CrossRefGoogle Scholar
  30. 30.
    Dobrovinskaya ER, Lytvynov LA, Piskchik V (2009) Sapphire: material, manufacturing, applications. Springer, New YorkGoogle Scholar
  31. 31.
    Goel S, Luo XC, Comely P, Reuben RL, Cox A (2013) Brittle-ductile transition during diamond turning of single crystal silicon carbide. Int J Mach Tools Manuf 65:15–21CrossRefGoogle Scholar
  32. 32.
    Henshall JL, Rowcliffe DJ, Edington JW (1977) Fracture toughness of single-crystal silicon carbide. J Am Ceramic Soc 60(7–8):373–375CrossRefGoogle Scholar
  33. 33.
    Yin L, Vancoille EYJ, Ramesh K, Huang H (2004) Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining. Int J Mach Tools Manuf 44:607–615CrossRefGoogle Scholar
  34. 34.
    Bifano TG, Dow T, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. Trans ASME J Eng Ind 113:184–189CrossRefGoogle Scholar
  35. 35.
    Xiao G, To S, Zhang G (2015) The mechanism of ductile deformation in ductile regime machining of 6H SiC. Comput Mater Sci 98:178–188CrossRefGoogle Scholar
  36. 36.
    Patten J, Gao W, Yasuto K (2005) Ductile regime nanomachining of single-crystal silicon carbide. J Manuf Sci and Eng 127:523–532CrossRefGoogle Scholar
  37. 37.
    Nin J, Li B (2012) Phase transformation in high-speed cylindrical grinding of SiC and its effects on residual stresses. Mater Lett 89:150–152CrossRefGoogle Scholar
  38. 38.
    Cheng J, Wu J, Zhou YG, Gong YD, Wen XL, Wen Q (2017) Characterization of fracture toughness and micro-grinding properties of monocrystal sapphire with a multi-layer toughening microstructure(MTM). J Mater Process Technol 239:258–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • C. C. Wang
    • 1
  • F. L. Zhang
    • 1
  • J. S. Pan
    • 1
  • J. B. Mao
    • 1
  • Y. Long
    • 1
  • H. P. Huang
    • 1
  • C. Y. Wang
    • 1
  • H. T. Lin
    • 1
  • X. Deng
    • 1
  • S. H. Wu
    • 1
  1. 1.School of Mechanical and Electronic EngineeringGuangdong University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations