Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting

  • Maciej Mazur
  • Paul Brincat
  • Martin Leary
  • Milan Brandt
ORIGINAL ARTICLE

Abstract

Additive manufacturing (AM) techniques such as selective laser melting (SLM) can enable the construction of injection moulding (IM) tools with conformal cooling channels that significantly improve performance through higher cooling uniformity and reduced cycle times. Design of IM cooling systems is typically achieved using commercial IM numerical modelling software originally developed for conventionally cooled mould designs. However, the accuracy of IM modelling software in predicting the performance of SLM manufactured tools with conformal cooling, across a range of moulding materials and processing conditions, has not been thoroughly evaluated in the literature. Furthermore, the SLM manufacturability and mechanical properties of tool steels typically applied in IM, such as AISI H13, are not well documented. This work addresses these deficiencies through the following: quantification of SLM H13 material properties, in particular fatigue strength which has not been previously reported; design and manufacture of a mould tool with easily exchangeable conventionally and conformally cooled inserts; and subsequent experimental validation of IM simulation software predictions under a range conditions. Result of mechanical testing showed SLM H13 parts to offer lower mechanical properties in the as-built condition compared to conventional materials; however, these increased substantially following residual stress reduction with heat treatment. Evaluation of the temperature prediction accuracy of IM numerical models showed generally high accuracy for conformally cooled SLM tools, although marginally lower when compared to conventionally cooled moulds. The outcomes of this work offer designers typical material property data for SLM manufactured H13 tooling, as well as an indication of the expected prediction accuracy of current commercial IM simulation software when applied to conformally cooled SLM tooling.

Keywords

Additive manufacturing Injection moulding Selective laser melting H13 steel Conformal cooling Fatigue strength Mechanical properties Validation Moldflow Simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Menges G, Michaeli W, Mohren P (2001) How to make injection molds. Carl Hanser GmbH, MünchenCrossRefGoogle Scholar
  2. 2.
    Kazmer DO (2007) Injection mold design engineering. Hanser Publishers, MunichCrossRefGoogle Scholar
  3. 3.
    Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des 69:65–89. doi: 10.1016/j.cad.2015.04.001 CrossRefGoogle Scholar
  4. 4.
    Sachs E, Wylonis E, Allen S et al (2000) Production of injection molding tooling with conformal cooling channels using the three dimensional printing process. Polym Eng Sci 40:1232–1247. doi: 10.1002/pen.11251 CrossRefGoogle Scholar
  5. 5.
    Altaf K, Majdi Abdul Rani A, Raghavan VR (2013) Prototype production and experimental analysis for circular and profiled conformal cooling channels in aluminium filled epoxy injection mould tools. Rapid Prototyp J 19:220–229. doi: 10.1108/13552541311323236 CrossRefGoogle Scholar
  6. 6.
    Au KM, Yu KM (2007) A scaffolding architecture for conformal cooling design in rapid plastic injection moulding. Int J Adv Manuf Technol 34:496–515. doi: 10.1007/s00170-006-0628-x CrossRefGoogle Scholar
  7. 7.
    Xu X, Sachs E, Allen S (2001) The design of conformal cooling channels in injection molding tooling. Polym Eng Sci 41:1265–1279CrossRefGoogle Scholar
  8. 8.
    Sachs E, Allen S, Guo H, et al (1997) Progress on tooling by 3D printing; conformal cooling, dimensional control, surface finish and hardness. In: Proceedings of the Eighth Annual Solid Freeform Fabrication Symposium. SME, pp 115–124Google Scholar
  9. 9.
    Over C, Meiners W, Wissenbach K, et al (2001) Selective laser melting: a new approach for the direct manufacturing of metal parts and tools. In: Proceedings of the International Conferences on LANE. pp 391–398Google Scholar
  10. 10.
    Rännar LE, Glad A, Gustafson CG (2007) Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyp J 13:128–135. doi: 10.1108/13552540710750870 CrossRefGoogle Scholar
  11. 11.
    Ahn D-G (2011) Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools—state of the art. Int J Precis Eng Manuf 12:925–938. doi: 10.1007/s12541-011-0125-5 CrossRefGoogle Scholar
  12. 12.
    Shayfull Z, Sharif S, Zain AM et al (2014) Potential of conformal cooling channels in rapid heat cycle molding: a review. Adv Polym Technol 33. doi: 10.1002/adv.21381
  13. 13.
    Autodesk Inc (2016) Autodesk Moldflow Insight User ManualGoogle Scholar
  14. 14.
    CoreTech System Co. L (2015) Moldex3DGoogle Scholar
  15. 15.
    Armillotta A, Baraggi R, Fasoli S (2014) SLM tooling for die casting with conformal cooling channels. Int J Adv Manuf Technol 71:573–583. doi: 10.1007/s00170-013-5523-7 CrossRefGoogle Scholar
  16. 16.
    Ahn DG, Kim HW (2010) Study on the manufacture of a thermal management mould with three different materials using a direct metal tooling rapid tooling process. Proc Inst Mech Eng B J Eng Manuf 224:385–402CrossRefGoogle Scholar
  17. 17.
    Wimpenny DI, Bryden B, Pashby IR (2003) Rapid laminated tooling. J Mater Process Technol 138:214–218. doi: 10.1016/S0924-0136(03)00074-8 CrossRefGoogle Scholar
  18. 18.
    Gibbons GJ, Hansell RG, Norwood AJ, Dickens PM (2003) Rapid laminated die-cast tooling. Assem Autom 23:372–381. doi: 10.1108/01445150310501208 CrossRefGoogle Scholar
  19. 19.
    Park HS, Pham NH (2009) Design of conformal cooling channels for an automotive part. Int J Automot Technol 10:87–93. doi: 10.1007/s12239-009-0011-7 CrossRefGoogle Scholar
  20. 20.
    Wang Y, Yu KM, Wang CCL, Zhang Y (2011) Automatic design of conformal cooling circuits for rapid tooling. CAD Computer Aided Design 43:1001–1010. doi: 10.1016/j.cad.2011.04.011 CrossRefGoogle Scholar
  21. 21.
    Au KM, Yu KM, Chiu WK (2011) Visibility-based conformal cooling channel generation for rapid tooling. Comput Aided Des 43:356–373. doi: 10.1016/j.cad.2011.01.001 CrossRefGoogle Scholar
  22. 22.
    Lin JC (2002) Optimum cooling system design of a free-form injection mold using an abductive network. J Mater Process Technol 120:226–236. doi: 10.1016/S0924-0136(01)01193-1 CrossRefGoogle Scholar
  23. 23.
    Agazzi A, Sobotka V, Legoff R, Jarny Y (2013) Optimal cooling design in injection moulding process—a new approach based on morphological surfaces. Appl Therm Eng 52:170–178. doi: 10.1016/j.applthermaleng.2012.11.019 CrossRefGoogle Scholar
  24. 24.
    Li CL, Li CG, Mok ACK (2005) Automatic layout design of plastic injection mould cooling system. CAD Computer Aided Design 37:645–662. doi: 10.1016/j.cad.2004.08.003 CrossRefGoogle Scholar
  25. 25.
    Thomas D (2010) The development of design rules for selective laser melting. Univeristy of Wales Institute, CardiffGoogle Scholar
  26. 26.
    Milovanovic J, Stojkovic M, Trajanovic M (2012) Metal laser sintering for rapid tooling in application to tyre tread pattern mould. INTECH Open Access Publisher, RijekaCrossRefGoogle Scholar
  27. 27.
    Wang L, Wei QS, Xue PJ, Shi YS (2012) Fabricate mould insert with conformal cooling channel using selective laser melting. Adv Mater Res 502:67–71. doi: 10.4028/www.scientific.net/AMR.502.67 CrossRefGoogle Scholar
  28. 28.
    Campanelli SL, Contuzzi N, Angelastro A, Ludovico AD (2010) Capabilities and performances of the selective laser melting process. New Trends in Technologies: Devices, Computer, Communication and Industrial Systems 233–252Google Scholar
  29. 29.
    ASM (1990) ASM Handbook, Volume 01 - Properties and Selection: Irons, Steels, and High-Performance AlloysGoogle Scholar
  30. 30.
    Yasa E, Kempen K, Kruth J (2010) Microstructure and mechanical properties of maraging steel 300 after selective laser melting. Proceedings of the 21st International Solid Freeform Fabrication Symposium 383–396Google Scholar
  31. 31.
    Akhtar S, Wright CS, Youseffi M, et al (2003) Direct selective laser sintering of tool steel powders to high density, Part A: Effects of laser beam width and scan strategy. pp 656–667Google Scholar
  32. 32.
    Lee J-HH, Jang JH, Joo BD, et al (2009) Application of direct laser metal tooling for AISI H13 tool steel. Transactions of Nonferrous Metals Society of China 19:s284–s287. doi: 10.1016/S1003-6326(10)60286-5
  33. 33.
    Hauser C, Childs T (2003) Direct selective laser sintering of tool steel powders to high density, Part A: Effects of laser beam width and scan strategy. Proceedings of the 2003 Solid Freeform Fabrication Symposium. 2003Google Scholar
  34. 34.
    Childs THC, Hauser C (2005) Raster scan selective laser melting of the surface layer of a tool steel powder bed. Proc Inst Mech Eng B J Eng Manuf 219:379–384. doi: 10.1243/095440505X32201 CrossRefGoogle Scholar
  35. 35.
    Childs THC, Hauser C, Badrossamay M (2005) Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. Proc Inst Mech Eng B J Eng Manuf 219:339–357. doi: 10.1243/095440505X8109 CrossRefGoogle Scholar
  36. 36.
    Kruth JP, Froyen L, Van Vaerenbergh J et al (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622. doi: 10.1016/j.jmatprotec.2003.11.051 CrossRefGoogle Scholar
  37. 37.
    Delgado J, Ciurana J, Rodríguez C (2012) Influence of process parameters on part quality and mechanical properties for DMLS and SLM with iron-based materials. Int J Adv Manuf Technol 60:601–610. doi: 10.1007/s00170-011-3643-5 CrossRefGoogle Scholar
  38. 38.
    Rombouts M, Kruth JP, Froyen L, Mercelis P (2006) Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann Manuf Technol 55:187–192. doi: 10.1016/S0007-8506(07)60395-3 CrossRefGoogle Scholar
  39. 39.
    Rehme O, Emmelmann C (2005) Reproducibility for properties of selective laser melting products. Proceedings of the Third International WLT-Conference on Lasers in Manufacturing, MunichGoogle Scholar
  40. 40.
    Mazur M, Leary M, McMillan M et al (2016) SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp J. doi: 10.1108/RPJ-06-2014-0075 Google Scholar
  41. 41.
    Mikli V, Kaerdi H, Kulu P, Besterci M (2001) Characterization of powder particle morphology. Proceedings of the Estonian Academy of Sciences: Engineering(Estonia) 7:22–34Google Scholar
  42. 42.
    Spierings AB, Voegtlin M, Bauer T, Wegener K (2015) Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing. Progress in Additive Manufacturing 1–12Google Scholar
  43. 43.
    Schmidt M, Dressler M, Ro M et al (2010) Temperature distribution in powder beds during 3D printing. Rapid Prototyp J 16:328–336. doi: 10.1108/13552541011065722 CrossRefGoogle Scholar
  44. 44.
    Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders. Phys Procedia 12:264–270. doi: 10.1016/j.phpro.2011.03.034 CrossRefGoogle Scholar
  45. 45.
    Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J 17:195–202. doi: 10.1108/13552541111124770 CrossRefGoogle Scholar
  46. 46.
    Kazymyrovych V (2010) Very high cycle fatigue of tool steels. Norwegian University of Science and Technology, TrondheimGoogle Scholar
  47. 47.
    Shiomi M, Osakada K, Nakamura K et al (2004) Residual stress within metallic model made by selective laser melting process. CIRP Ann Manuf Technol 53:195–198. doi: 10.1016/S0007-8506(07)60677-5 CrossRefGoogle Scholar
  48. 48.
    Elambasseril J, Feih S, Bringezu M, Brandt M (2012) Influence of process parameters on residual stress in selective laser melting of TI64. Manufacturing innovations in laser additive manufactureGoogle Scholar
  49. 49.
    Brinksmeier E, Levy G, Meyer D, Spierings AB (2010) Surface integrity of selective-laser-melted components. CIRP Annals-Manufacturing Technology 59:601–606CrossRefGoogle Scholar
  50. 50.
    ASTM (2010) E8/E8M standard test methods for tension testing of metallic materials 1. Annual Book of ASTM Standards 4:1–27. doi: 10.1520/E0008 Google Scholar
  51. 51.
    ASTM (2002) E 466-96 (reapproved 2002)—standard practice for conducting force controlled constant amplitude axial fatigue tests of metallic materials. TEST 3:4–8. doi: 10.1520/E0466-07.2 Google Scholar
  52. 52.
    Alicona (2014) Alicona Imaging Group GhbM. www.alicona.at
  53. 53.
    Mercelis P, Kruth J (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265. doi: 10.1108/13552540610707013 CrossRefGoogle Scholar
  54. 54.
    Hauk V (1997) Structural and residual stress analysis by nondestructive methods: evaluation–application–assessment. Elsevier Science, AmsterdamMATHGoogle Scholar
  55. 55.
    Wang X, Gong X, Chou K (2015) Review on powder-bed laser additive manufacturing of Inconel 718 parts. In: ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, p V001T02A063-V001T02A063Google Scholar
  56. 56.
    Sun S, Brandt M, Easton M (2017) 2—powder bed fusion processes: an overview BT—laser additive manufacturing. In: Woodhead publishing series in electronic and optical materials. Woodhead Publishing, Cambridge, pp 55–77Google Scholar
  57. 57.
    Thöne M, Leuders S, Riemer A et al (2012) Influence of heat-treatment on selective laser melting products—e.g. Ti6Al4V. In: Solid freeform fabrication. Universtiy of Texas at Austin, Austin, pp 492–498Google Scholar
  58. 58.
    Rosato DV, Rosato MG (2000) Injection molding handbook. Kluwer AcademicGoogle Scholar
  59. 59.
    Moody LF (1944) Friction factors for pipe flow. Trans Asme 66:671–684Google Scholar
  60. 60.
    Kandlikar SG, Schmitt D, Carrano AL, Taylor JB (2005) Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys Fluids. doi: 10.1063/1.1896985 MATHGoogle Scholar
  61. 61.
    Taylor JB, Carrano AL, Kandlikar SG (2006) Characterization of the effect of surface roughness and texture on fluid flow—past, present, and future. Int J Therm Sci 45:962–968CrossRefGoogle Scholar
  62. 62.
    Babcock & Wilcox Company (2005) Steam: its generation and use, 41st edn. Babcock & Wilcox Company, CharlotteGoogle Scholar
  63. 63.
    Schurmann E (1979) Abschatzmethoden fur die Auslegung von Spritzgie Bwerkzeugen. University, Aachen TechGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  • Maciej Mazur
    • 1
  • Paul Brincat
    • 2
  • Martin Leary
    • 1
  • Milan Brandt
    • 1
  1. 1.RMIT Centre for Additive Manufacturing, School EngineeringRMIT UniversityMelbourneAustralia
  2. 2.Autodesk Australia Pty. Ltd.KilsythAustralia

Personalised recommendations