Machine Tool 4.0 for the new era of manufacturing

Abstract

The widespread use and continuous improvements of machine tools have had a significant impact on productivity in manufacturing industry ever since the Industrial Revolution. At the dawn of the new era of industrialization, the need to advance machine tools to a new level that accords to the concept of Industrie 4.0 has to be recognised and addressed. Muck like the different stages of industrialisation, machine tools have also gone through different stages of technological advancements, i.e., Machine Tool 1.0, Machine Tool 2.0 and Machine Tool 3.0. Industrie 4.0 pleads for a new generation of machines—Machine Tool 4.0. This paper describes some of the key and desired characteristics of Machine Tool 4.0 such as Cyber-physical Machine Tools, vertically and horizontally integrated machine tools and more intelligent, autonomous and safer machine tools.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lee EA (2010) CPS Foundations, In: Proceedings of Design Automation Conference (DAC), ACM

  2. 2.

    Derler P, Lee EA, Sangiovanni-Vincentelli A (2012) Modeling cyber-physical systems, In: Proceedings of the IEEE (special issue on CPS), 100(1):13–28

  3. 3.

    acatech. (2015) Securing the future of German manufacturing industry: recommendations for implementing the strategic initiative INDUSTRIE 4.0 (Final report of the Industrie 4.0 Working Group). acatech – National Academy of Science and Engineering, Germany

  4. 4.

    European Commission (2013) Factories of the future: multi-annual roadmap for the contractual PPP under HORIZON 2020. Publications Office of the European Union. ISBN 978-92-79-31238-0. European Union

  5. 5.

    Moore WR (1970) Foundations of mechanical accuracy (1st ed.), Bridgeport, Connecticut, USA: Moore Special Tool Co

  6. 6.

    Cheng T, Zhang J, Hu C, Wu B, Yang S (2001) Intelligent machine tools in a distributed network manufacturing mode environment. Int J Adv Manuf Technol 17(3):221–232

    Article  Google Scholar 

  7. 7.

    Allcock A (2006) Much more than DNC. Machinery 164(4120):16–20

    Google Scholar 

  8. 8.

    Xu X. (2009) Integrating advanced computer-aided design, manufacturing, and numerical control: principles and implementations. IGI Global. ISBN: 978-1-59904-714-0

  9. 9.

    EIA (1979) Standard RS-274-D: Interchangeable Variable Block Data Format for Positioning, Contouring, and Contouring/Positioning Numerically Controlled Machines, Washington, D.C. USA. Electron Ind Assoc

  10. 10.

    ISO 6983-1 (1982) Numerical control of machines—program format and definition of address words—part 1: data format for positioning, line motion and contouring control systems. Chemin de Blandonnet 8. CP 401 1214 Vernier, Geneva. Switzerland

  11. 11.

    Behrendt T, Zein A, Min S (2012) Development of an energy consumption monitoring procedure for machine tools. CIRP Ann Manuf Technol 61(1):43–46

    Article  Google Scholar 

  12. 12.

    Mori M, Fujishima M, Inamasu Y, Oda Y (2011) A study on energy efficiency improvement for machine tools. CIRP Ann Manuf Technol 60(1):145–148

    Article  Google Scholar 

  13. 13.

    Moriwaki T (2008) Multi-functional machine tool. CIRP Ann Manuf Technol 57(2):736–749

    MathSciNet  Article  Google Scholar 

  14. 14.

    Uhlmann E, Eßmann J, Wintering J-H (2012) Design- and control-concept for compliant machine tools based on controller integrated models. CIRP Ann Manuf Technol 61(1):347–350

    Article  Google Scholar 

  15. 15.

    Abele E, Altintas Y, Brecher C (2010) Machine tool spindle units. CIRP Ann Manuf Technol 59(2):781–802

    Article  Google Scholar 

  16. 16.

    Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686

    Article  Google Scholar 

  17. 17.

    Xu Y, Zhang L, Wang S, Du H, Chai B, Hu SJ (2015) Active precision design for complex machine tools: methodology and case study. Int J Adv Manuf Technol 80(1–4):581–590

    Article  Google Scholar 

  18. 18.

    Nassehi A, Newman ST (2012) Modeling of machine tools using smart interlocking software blocks. CIRP Ann Manuf Technol 61(1):435–438

    Article  Google Scholar 

  19. 19.

    Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607

    Article  Google Scholar 

  20. 20.

    Kjellberg T, von Euler-Chelpin A, Hedlind M, Lundgren M, Sivard G, Chen D (2009) The machine tool model-A core part of the digital factory. CIRP Ann Manuf Technol 58(1):425–428

    Article  Google Scholar 

  21. 21.

    Yang W, Xu X (2008) Modelling machine tool data in support of STEP-NC based manufacturing. Int J Comput Integr Manuf 21(7):745–763

    Article  Google Scholar 

  22. 22.

    ISO 14649-1 (2003) Industrial automation systems and integration—physical device control—data model for computerized numerical controllers—part 1: overview and fundamental principles. Chemin de Blandonnet 8. CP 401. 1214 Vernier, Geneva. Switzerland

  23. 23.

    ISO 10303-238 (2007) Industrial automation systems and integration -- Product data representation and exchange -- Part 238: application protocol: application interpreted model for computerized numerical controllers. Chemin de Blandonnet 8. CP 401. 1214 Vernier, Geneva. Switzerland

  24. 24.

    Suh SH, Cheon SU (2002) A framework for an intelligent CNC and data model. Int J Adv Manuf Technol 19:727–735

    Article  Google Scholar 

  25. 25.

    Suh SH, Cho JH, Hong HD (2002) On the architecture of intelligent STEP-compliant CNC. Int J Comput Integr Manuf 15:168–177

    Article  Google Scholar 

  26. 26.

    Xu X, Wang H, Mao J, Newman ST, Kramer TR, Proctor FM, Michaloski JL (2005) STEP-compliant NC research: the search for intelligent CAD/CAPP/CAM/CNC integration. Int J Prod Res 43(17):3703–3743

    Article  Google Scholar 

  27. 27.

    Xu X (2006) Realisation of STEP-NC enabled machining. Robot Comput Integr Manuf 22(2):144–153

    Article  Google Scholar 

  28. 28.

    Venkatesh S, Odendahl D, Xu X, Michaloski J, Proctor F, Kramer T (2007) Boeing, NIST help to take STEP-NC to new heights”. Tooling and Production, pp 28–31

  29. 29.

    Xu X, Nee AYC (2010) Advanced Design and Manufacturing Based on STEP, (Edited). Springer Veralag. January, 2010. ISBN: 978-1-84882-738-7

  30. 30.

    Ridwan F, Xu X, Liu G (2012) A framework for machining optimisation based on STEP-NC. J Intell Manuf 23(3):423–441

    Article  Google Scholar 

  31. 31.

    Hardwick M, Zhao YF, Proctor FM, Nassehi A, Xu X et al (2013) A roadmap for STEP-NC enabled interoperable manufacturing. Int J Adv Manuf Technol 68:1023–1037

    Article  Google Scholar 

  32. 32.

    ISO 10303-1 (1994) Industrial automation systems and integration—product data representation and exchange—part 1: overview and fundamental principles. Chemin de Blandonnet 8. CP 401. 1214 Vernier, Geneva. Switzerland

  33. 33.

    Okuma OSP control. http://www.okuma.com/osp-p-control. (Accessed on 20 November 2015)

  34. 34.

    KUKA.PLC mxA. One interface for all. PF0003/E/2/0313. KUKA Roboter GmbH Hery-Park 3000, 86368 Gersthofen, Germany

  35. 35.

    MTConnect. Association for manufacturing technology and MTConnect Institute. 7901 Westpark Drive. McLean, VA 22102. USA

  36. 36.

    OPC UA. (2006) OPC Foundation: OPC UA Specification: part 1—concepts. Version 1.00

  37. 37.

    Lee J, Bagheri B, Kao HA (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing Letters 3:18–23

    Article  Google Scholar 

  38. 38.

    Essex D (2014) Industrial Internet Consortium tackles interoperability. TechTarget

  39. 39.

    Industrial Internet Consortium, Needham, Massachusetts, USA. http://www.iiconsortium.org

  40. 40.

    Lee J, Kao HA, Yang S (2014) Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP 16:3–8

    Article  Google Scholar 

  41. 41.

    Acatech (2015) SMART SERVICE WELT: recommendations for the strategic initiative web-based services for businesses. Final Report. Long Version. acatech – National Academy of Science and Engineering, Germany

  42. 42.

    Greenough RM, Grubic T (2011) Modelling condition-based maintenance to deliver a service to machine tool users. Int J Adv Manuf Technol 52(9–12):1117–1132

    Article  Google Scholar 

  43. 43.

    Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput Integr Manuf 28(1):75–86

    Article  Google Scholar 

  44. 44.

    Wang XV, Xu X (2013) An interoperable solution for cloud manufacturing. Robot Comput Integr Manuf 29:232–247

    MathSciNet  Article  Google Scholar 

  45. 45.

    Wang XV, Xu X (2014) Virtualize manufacturing capabilities in the Cloud: requirements, architecture and implementation. Int J Manuf Res 9(4):348–368

    MathSciNet  Article  Google Scholar 

  46. 46.

    Lu Y, Xu X, Xu J (2014) Development of a hybrid manufacturing cloud. J Manuf Syst 33:551–566

    Article  Google Scholar 

  47. 47.

    Ko, RKL, Lee BSG, Pearson S (2011) Towards achieving accountability, auditability and trust in cloud computing, in International workshop on cloud computing: architecture, algorithms and applications (CloudComp2011), Kochi, India, pp. 5–18

  48. 48.

    Ko RKL, Lee BSG, Rajan V (2013) Understanding cloud failures. IEEE Spectr 49(12):84

    Google Scholar 

  49. 49.

    Schnorr C-P (1991) Efficient signature generation by smart cards. J Cryptol 4:161–174

    Article  MATH  Google Scholar 

  50. 50.

    Shen J-J, Lin C-W, Hwang M-S (2003) A modified remote user authentication scheme using smart cards. IEEE Trans Consum Electron 49:414–416

    Article  Google Scholar 

  51. 51.

    Daemen J, Rijmen V (2002) The design of Rijndael: AES-the advanced encryption standard: Springer

  52. 52.

    Bernstein DJ (2005) Salsa20 specification, eSTREAM Project algorithm description, http://www.ecrypt.eu.org/stream/salsa20pf.html.

  53. 53.

    Bernstein DJ (2008) ChaCha, a variant of Salsa20, in Workshop Record of SASC

  54. 54.

    Clarke G (2013) Microsoft’s windows azure plan B: a hard drive, a courier and a data-centre monkey. http://www.theregister.co.uk/2013/11/05/windows_azure_hard_drive_import_exp ort/

  55. 55.

    Fielding RT (2000) Architectural styles and the design of network-based software architectures. University of California, USA

  56. 56.

    Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans Internet Technol (TOIT) 2:115–150

    Article  Google Scholar 

  57. 57.

    Ko RKL, Kirchberg M, Lee BS, Chew E (2012) Overcoming large data transfer bottlenecks in RESTful service orchestrations, in Web Services (ICWS). IEEE 19th Int Conf 654–656

  58. 58.

    Gu Y, Grossman RL (2003) UDT: an application level transport protocol for grid computing, in second International workshop on protocols for fast long- distance networks

  59. 59.

    Gu Y, Grossman RL (2007) UDT: UDP-based data transfer for high-speed wide area networks. Comput Netw 51:1777–1799

    Article  MATH  Google Scholar 

  60. 60.

    Rumble SM, Ongaro D,Stutsman R, Rosenblum M, Ousterhout JK (2011) It’s time for low latency, in Proceedings of the 13th USENIX conference on hot topics in operating systems, pp. 11–11

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xun Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X. Machine Tool 4.0 for the new era of manufacturing. Int J Adv Manuf Technol 92, 1893–1900 (2017). https://doi.org/10.1007/s00170-017-0300-7

Download citation

Keywords

  • Machine tools
  • Machine Tool 4.0
  • CNC
  • Industrie 4.0
  • Cyber-physical systems (CPS)
  • Cyber-physical machine tools (CPMT)