Skip to main content
Log in

Additive manufacturing tooling for the automotive industry

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Automotive industry faces new challenges every day, new design trends and technological deployments from research push companies to develop new models and facelifts in short term, requiring new tools or tool reshaping. Concerning the current world economic scenario, decreasing time for tooling up becomes as important as decreasing time-to-market. Such scenario opens up the horizons for new manufacturing approaches like additive manufacturing, in this case, applied for tooling up a stamping process on the automotive industry for the production of body panels. This approach enables the manufacturing of stamping inserts using similar high performance alloy steel as in conventional tooling, therefore, without losing tool mechanical properties. The stamping tools produced were tested by an automotive company in order to determine tool behaviour under real operating conditions, considering the high level demands of the stamping process. The results obtained enabled to conclude that metal additive manufacturing provided tools for the stamping process with excellent performance with a significant decrease on time-to-tooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Weller C, Kleer R, Piller FT (2015) Economic implications of 3D printing: market structure models in light of additive manufacturing revisited. Int J Prod Econ 164:43–56. doi:10.1016/j.ijpe.2015.02.020

    Article  Google Scholar 

  2. Garrett B (2014) 3D printing: new economic paradigms and strategic shifts. Glob Policy 5:70–75. doi:10.1111/1758-5899.12119

    Article  Google Scholar 

  3. Costa C, Aguzzi J (2015) Temporal shape changes and future trends in European automotive design. Mach Des 3:256–267. doi:10.3390/machines3030256

    Article  Google Scholar 

  4. Gao W, Zhang Y, Ramanujan D et al (2015) The status, challenges, and future of additive manufacturing in engineering. Comput Des 69:65–89. doi:10.1016/j.cad.2015.04.001

    Google Scholar 

  5. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928. doi:10.1007/s11665-014-0958-z

    Article  Google Scholar 

  6. Khajavi SH, Partanen J, Holmström J (2014) Additive manufacturing in the spare parts supply chain. Comput Ind 65:50–63. doi:10.1016/j.compind.2013.07.008

    Article  Google Scholar 

  7. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210:2103–2118. doi:10.1016/j.jmatprotec.2010.07.019

    Article  Google Scholar 

  8. Monzón MD, Ortega Z, Martínez A, Ortega F (2015) Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol 76:1111–1121. doi:10.1007/s00170-014-6334-1

    Article  Google Scholar 

  9. Baumers M, Dickens P, Tuck C, Hague R (2015) The cost of additive manufacturing: machine productivity, economies of scale and technology-push. Technol Forecast Soc Change. doi:10.1016/j.techfore.2015.02.015

    Google Scholar 

  10. Mellor S, Hao L, Zhang D (2014) Additive manufacturing: a framework for implementation. Int J Prod Econ 149:194–201. doi:10.1016/j.ijpe.2013.07.008

    Article  Google Scholar 

  11. Craeghs T, Bechmann F, Berumen S, Kruth J-P (2010) Feedback control of layerwise laser melting using optical sensors. Phys Procedia 5:505–514. doi:10.1016/j.phpro.2010.08.078

    Article  Google Scholar 

  12. Kruth J, Mercelis P, Van Vaerenbergh J, Craeghs T (2007) Feedback control of selective laser melting. In: Proc. 3rd Int. Conf. Adv. Res. Virtual Rapid Prototyp. p 7

  13. Yasa E, Kruth J-P (2011) Application of laser re-melting on selective laser melting parts. Adv Prod Eng Manag 6:259–270

    Google Scholar 

  14. Makinouchi A (1996) Sheet metal forming simulation in industry. J Mater Process Technol 60:19–26. doi:10.1016/0924-0136(96)02303-5

    Article  Google Scholar 

  15. Uddeholms AB (2013) Cold Work Tooling Tooling Application. 28

  16. EOS-GmbH (2011) Material data sheet EOS Maraging Steel MS1. 6

  17. Townsend A, Senin N, Blunt L et al (2016) Surface texture metrology for metal additive manufacturing: a review. Precis Eng 46:34–47. doi:10.1016/j.precisioneng.2016.06.001

    Article  Google Scholar 

  18. Spears TG, Gold SA (2016) In-process sensing in selective laser melting (SLM) additive manufacturing. Integr Mater Manuf Innov 5:1–25. doi:10.1186/s40192-016-0045-4

    Article  Google Scholar 

  19. Kruth J, Badrossamay M, Yasa E, et al (2010) Part and material properties in selective laser melting of metals. In: 16th Int. Symp. Electromachining. pp 1–12

  20. Löber L, Flache C, Petters R et al (2013) Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyp J 19:173–179. doi:10.1108/13552541311312166

    Article  Google Scholar 

  21. Ghiotti A, Bruschi S, Medea F, Hamasaiid A (2016) Tribological behavior of high thermal conductivity steels for hot stamping tools. Tribol Int 97:412–422. doi:10.1016/j.triboint.2016.01.024

    Article  Google Scholar 

  22. Rayna T, Striukova L (2014) The impact of 3D printing technologies on business model innovation. In: Benghozi P, Krob D, Lonjon A, Panetto H (eds) Digit. Enterp. Des. {&} Manag. Proc. second Int. Conf. Digit. Enterp. Des. Manag. DED{&}M 2014. Springer International Publishing, Cham, pp 119–132

    Google Scholar 

  23. Grunberger T, Domrose T (2015) Direct metal laser sintering identification of process phenomena by optical in-process monitoring. Laser Tech J 12:45–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Vasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, R., Barreiros, F.M., Alves, L. et al. Additive manufacturing tooling for the automotive industry. Int J Adv Manuf Technol 92, 1671–1676 (2017). https://doi.org/10.1007/s00170-017-0239-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0239-8

Keywords

Navigation