Skip to main content
Log in

Surface feature formation mechanism during finish milling of gray cast iron

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Gray cast iron (GCI) is highly anisotropic at the microscale consisting of stochastically distributed and orientated graphite flakes within a ferric matrix. The anisotropy of the microstructure endows gray cast iron with favorable damping characteristics which makes it a common material for machine tool structural components. However, the microstructure inhibits the formation of a finished surface of sufficient quality for use as a slideway when milled with a defined cutting edge. The mechanisms of irregular surface formation during the machining of GCI were investigated using both a 3-D finite element cutting simulation and milling experiments. Investigation of simulation and machining tests indicates that the interaction of the primary shear zone in front of the cutting edge and graphite flakes is the cause of microcavity formation on the machined surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soshi M, Ueda E, Mori M (2014) A productive and cost-effective CBN hard milling-based fabrication method of hardened sliding guideways made of refined cast iron. Int J Adv Manuf Technol 70(5–8):911–917 doi:10.1007/s00170-013-5343-9

    Article  Google Scholar 

  2. Burdekin M, Cowley A, Hemingray P (1971) Wear of slideways. Tribology 4(1):15–20 doi:10.1016/0041-2678(71)90003-0

    Article  Google Scholar 

  3. Jarbin H, Matthias E (1981) The dynamic characteristics of slideways and its mathematical models. CIRP Ann Manuf Technol 30(1):289–292 doi:10.1016/S0007-8506(07)60944-5

    Article  Google Scholar 

  4. Jisheng E, Gawne DT (1994) Tribological performance of bronze-filled PTFE facings for machine tool slideways. Wear 176(2):195–205 doi:10.1016/0043-1648(94)90147-3

    Article  Google Scholar 

  5. Yukeng H, Darong C, Linqing Z (1985) Effect of surface topography of scraped machine tool guideways on their tribological behaviour. Tribol Int 18(2):125–129 doi:10.1016/0301-679X(85)90054-4

    Article  Google Scholar 

  6. Marui E, Endo H, Hashimoto M, Kato S (1996) Some considerations of slideway friction characteristics by observing stick-slip vibration. Tribol Int 29(3):251–262 doi:10.1016/0301-679X(96)83204-X

    Article  Google Scholar 

  7. Bilkay O, Anlagan O (2004) Computer simulation of stick-slip motion in machine tool slideways. Tribol Int 37(4):347–351 doi:10.1016/j.triboint.2003.11.006

    Article  Google Scholar 

  8. Raymond N, Hill S, Soshi M (2016) Characterization of surface polishing with spindle mounted abrasive disk-type filament tool for manufacturing of machine tool sliding guideways. Int J Adv Manuf Technol doi:10.1007/s00170-015-8283-8

  9. Baker TJ (1978) The fracture resistance of flake graphite cast iron. Int J Mater Eng Appl 1(1):13–18 doi:10.1016/0141-5530

  10. Bulloch JH (1995) Near threshold fatigue behaviour of flake graphite cast irons microstructures. Theor Appl Fract Mech 24(1):65–78 doi:10.1016/0167-8442(95)00032-A

    Article  Google Scholar 

  11. He ZR, Lin GX, Ji S (1997) A new understanding on the relation among microstructure micro interfacial mechanical behaviours and macro mechanical properties in cast iron. Mater Sci Eng A 234-236(97):161–164 doi:10.1016/S0921-5093(97)00147-0

    Article  Google Scholar 

  12. Kohout J (2001) A simple relation for deviation of grey and nodular cast irons from Hooke’s law. Mater Sci Eng A 313(1–2):16–23 doi:10.1016/S0921-5093(01)01145-5

    Article  Google Scholar 

  13. Ghaderi AR, Nili Ahmadabadi M, Ghasemi HM (2003) Effect of graphite morphologies on the tribological behavior of austempered cast iron. Wear 255(1–6):410–416 doi:10.1016/S0043-1648(03)00156-X

    Article  Google Scholar 

  14. Ghasemi R, Elmquist L (2014a) A study on graphite extrusion phenomenon under the sliding wear response of cast iron using microindentation and microscratch techniques. Wear 320:120–126 doi:10.1016/j.wear.2014.09.002

    Article  Google Scholar 

  15. Ghasemi R, Elmquist L (2014b) The relationship between flake graphite orientation, smearing effect, and closing tendency under abrasive wear conditions. Wear 317(1–2):153–162 doi:10.1016/j.wear.2014.05.015

    Article  Google Scholar 

  16. Katuku K, Koursaris A, Sigalas I (2009) Wear, cutting forces and chip characteristics when dry turning ASTM Grade 2 austempered ductile iron with PcBN cutting tools under finishing conditions. J Mater Process Technol 209(5):2412–2420 doi:10.1016/j.jmatprotec.2008.05.042

    Article  Google Scholar 

  17. Fallböhmer P, Rodríguez CA, Özel T, Altan T (2000) High-speed machining of cast iron and alloy steels for die and mold manufacturing. J Mater Process Technol 98(1):104–115 doi:10.1016/S0924-0136(99)00311-8

    Article  Google Scholar 

  18. López de Lacalle LN, Lamikiz A, Sánchez JA, Arana JL (2002) Improving the surface finish in high speed milling of stamping dies. J Mater Process Technol 123(2):292–302 doi:10.1016/S0924-0136(02)00102-4

    Article  Google Scholar 

  19. De Souza Jr., A. M., Sales, W. F., Santos, S. C., & Machado, A. R. (2005). Performance of single Si3N4 and mixed Si3N4+PCBN wiper cutting tools applied to high speed face milling of cast iron. Int J Mach Tools Manuf, 45(3), 335–344. doi:10.1016/j.ijmachtools.2004.08.006

  20. Liu J, Yamazaki K, Ueda H, Narutaki N, Yamane Y (2002) Machinability of pearlitic cast iron with cubic boron nitride (CBN) cutting tools. J Manuf Sci Eng 124(4):820 doi:10.1115/1.1511522

    Article  Google Scholar 

  21. Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol 62(2):695–718 doi:10.1016/j.cirp.2013.05.006

    Article  Google Scholar 

  22. Simoneau A, Ng E, Elbestawi MA (2006a) Surface defects during microcutting. Int J Mach Tools Manuf 46(12–13):1378–1387 doi:10.1016/j.ijmachtools.2005.10.001

    Article  Google Scholar 

  23. Simoneau A, Ng E, Elbestawi MA (2006b) The effect of microstructure on chip formation and surface defects in microscale, mesoscale, and macroscale cutting of steel. CIRP Ann Manuf Technol 55(1):97–102 doi:10.1016/S0007-8506(07)60375-8

    Article  Google Scholar 

  24. Simoneau A, Ng E, Elbestawi MA (2007) Modeling the effects of microstructure in metal cutting. Int J Mach Tools Manuf 47(2):368–375 doi:10.1016/j.ijmachtools.2006.03.006

    Article  Google Scholar 

  25. Abouridouane M, Klocke F, Lung D, Adams O (2012) A new 3D multiphase FE model for micro cutting ferritic-pearlitic carbon steels. CIRP Ann Manuf Technol 61(1):71–74 doi:10.1016/j.cirp.2012.03.075

    Article  Google Scholar 

  26. Abouridouane M, Klocke F, Lung D (2013) Microstructure-based 3D finite element model for micro drilling carbon steels. Procedia CIRP 8:94–99 doi:10.1016/j.procir.2013.06.071

    Article  Google Scholar 

  27. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60(2):603–626 doi:10.1016/j.cirp.2011.05.002

    Article  Google Scholar 

  28. Mohammed WM, Ng E, Elbestawi MA (2011) Modeling the effect of the microstructure of compacted graphite iron on chip formation. Int J Mach Tools Manuf 51(10–11):753–765 doi:10.1016/j.ijmachtools.2011.06.005

    Article  Google Scholar 

  29. Mohammed WM, Ng E, Elbestawi MA (2012) Modeling the effect of compacted graphite iron microstructure on cutting forces and tool wear. CIRP J Manuf Sci Technol 5(2):87–101 doi:10.1016/j.cirpj.2012.03.002

    Article  Google Scholar 

  30. Ljustina G, Larsson R, Fagerström M (2014) A FE based machining simulation methodology accounting for cast iron microstructure. Finite Elem Anal Des 80:1–10 doi:10.1016/j.finel.2013.10.006

    Article  Google Scholar 

  31. Odum K, Soshi M (2016) Surface formation study using a 3-D explicit finite element model of machining of gray cast iron. Procedia CIRP 45:111–114 doi:10.1016/j.procir.2016.02.168

    Article  Google Scholar 

  32. Johnson, G. R., & Cook, W. H. (1983). A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics.

  33. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(I)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Soshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odum, K., Raymond, N., Pell, D. et al. Surface feature formation mechanism during finish milling of gray cast iron. Int J Adv Manuf Technol 92, 459–469 (2017). https://doi.org/10.1007/s00170-017-0162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0162-z

Keywords

Navigation