Skip to main content
Log in

Comparison between IEF model and numerical method based on the derivation method of Bridgman to evaluating fracture toughness in galvanized steel sheet

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present work proposes a new numerical approach based on the derivation method of Bridgman to determine (K IC ) of galvanized steel sheets. The method relies on a fracture analysis numerical code “Franc2D,” which permits to simulating the initiation and propagation of a crack on grooved tensile specimens. First, the stress intensity factor is obtained while the crack is propagating and then (K IC ) is determined from the fitting curves of the stress intensity factor (K I ) to crack length (a) plot through mathematical transformations. The results are validated by comparing them to those obtained through the experimental approach using Vickers hardness based IEF engineering models. The relative values of (K IC ) are admissible and acceptable with a coefficient of variation of 14% for a large range of groove radius. Hence, the present numerical simulation can be fairly used in order to reduce time consuming and avoid costly experimental mechanical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coni N, Gipiela ML, D’Oliveira ASCM, Marcondes PVP (2009) Study of the mechanical properties of the hot dip galvanized steel and galvalume. J of the Braz Soc of Mech Sci and Eng 4:319–326

    Article  Google Scholar 

  2. Seré PR, Culcasi JD, Elsner CI, Di Sarli AR (1999) Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets. Surf Coat Technol 122:143–149

    Article  Google Scholar 

  3. Cheng JG, Zhang J, Chu CC, Zhe J (2005) Experimental study and computer simulation of fracture toughness of sheet metal after laser forming. Int J Adv Manuf Technol 26:1222–1230

    Article  Google Scholar 

  4. Shih HC, Hsu JW, Sun CN, Chung SC (2002) The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments. Surf Coat Technol 150:70–75

    Article  Google Scholar 

  5. Carbucicchio M, Ciprian R, Ospitali F, Palombarini G (2008) Morphology and phase composition of corrosion products formed at the zinciron interface of a galvanized steel. Corros Sci 50:2605–2613

    Article  Google Scholar 

  6. Hayat F, Sevim I (2012) The effect of welding parameters on fracture toughness of resistance spot-welded galvanized DP600 automotive steel sheets. Int J Adv Manuf Technol 58:1043–1050

    Article  Google Scholar 

  7. Asgari A, Toroghinejad MR, Golozar MA (2009) Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings. Curr Appl Phys 9:59–66

    Article  Google Scholar 

  8. Kim H, Sung J, Goodwin FE, Altan T (2008) Investigation of galling in forming galvanized advanced high strength steels (AHSSs) using the twist compression test (TCT). J Mater Process Technol 205:459–468

    Article  Google Scholar 

  9. Ploypech S, Boonyongmaneerat Y, Jearanaisilawong P (2012) Crack initiation and propagation of galvanized coatings hot-dipped at 4500C under bending loads. Surf Coat Technol 206:3758–3763

    Article  Google Scholar 

  10. Lai WJ, Pan J (2014) Stress intensity factor solutions for adhesive-bonded lap-shear specimens of magnesium and steel sheets with and without kinked cracks for fatigue life estimations. Eng Fract Mech 131:454–470

    Article  Google Scholar 

  11. Byun TS, Kim SH, Lee BS, Kim IS, Hong JH (2000) Estimation of fracture toughness transition curves of RPV steels from ball indentation and tensile test data. J Nucl Mater 277:263–273

    Article  Google Scholar 

  12. Byun TS, Kim JW, Hong JH (1998) A theoretical model for determination of fracture toughness of reactor pressure vessel steels in the transition region from automated ball indentation test. J Nucl Mater 252:187–194

    Article  Google Scholar 

  13. Haggag FM, Byun TS, Hong JH, Miraglia PQ, Murty KL (1998) Indentation-energy-to-fracture (IEF) parameter for characterization of DBTT in carbon steels using nondestructive automated ball indentation (ABI) technique. Scripta Matetialia 38(4):645–651

    Article  Google Scholar 

  14. Khandelwal HK, Sharma K, Chhibber R (2012) Mechanical property estimation of similar weld using ball indentation technique. J Miner Mater Charact Eng 11:1095–1100

    Google Scholar 

  15. Mohammadi AH, Naderi M, Iranmanesh M (2011) Fracture toughness evaluation of 3Cr-1Mo steel from Vickers indentation and tensile test data. Procedia Engineering 10:228–235

    Article  Google Scholar 

  16. Bridgman PW (1952) Studies in large plastic flow and fracture. McGraw-Hill.

  17. Bai Y (2008) Effect of loading history on necking and fracture. PhD thesis, Massachusetts Institute of Technology, USA

  18. Holloman JH (1945) Tensile deformation. Trans AIME 162:268–290

    Google Scholar 

  19. ASTM E1921-98 (1998) Test method for the determination of reference temperature, T0, for ferritic steels in the transition range

  20. Moussa C, Bartier O, Mauvoisin G, Delattre G, Hernot X (2013) Revue bibliographique sur la caractérisation mécanique des matériaux utilisant la déformation représentative en indentation sphérique. Matériaux et technique 101:302

    Article  Google Scholar 

  21. Bektes M, Uzun O, Aktȕrk S, Ekinci AE, Uçar N (2004) Vickers Microhardness studies of Fe-Mn binary alloys. Chin J Phys 42(6):733–739

    Google Scholar 

  22. Davis JR (2004) Tensile testing, second edition. ASM International 13:226–227

    Google Scholar 

  23. Kut S (2010) A simple method to determine ductile fracture strain in a tensile test of plane specimens. Metalurgija 49(4):295–299

    Google Scholar 

  24. Dzik EJ, Lajtai EZ (1996) Primary fracture propagation from circular cavities loaded in compression. Int J Fract 79:49–64

    Article  Google Scholar 

  25. Cendon DA, Galvez JC, Elices M, Planas J (2000) Modelling the fracture of concrete under mixed loading. Int J Fract 103:293–310

    Article  Google Scholar 

  26. Carpinteri A, Invernizzi S (2005) Numerical analysis of the cutting interaction between indenters acting on disordered materials. Int J Fract 131:143–154

    Article  MATH  Google Scholar 

  27. Lim WK (2011) Determination of second-order term coefficients for the inclined crack in orthotropic plate using singular finite elements. Int J Fract 168:125–132

    Article  MATH  Google Scholar 

  28. Seifi R, Eshraghi M (2013) Effects of mixed-mode overloading on the mixed-mode I + II fatigue crack growth. Arch Appl Mech 83:987–1000

    Article  MATH  Google Scholar 

  29. Al-Mukhtar AM (2016) Mixed-mode crack propagation in cruciform joint using Franc2D. J Fail Anal And Preven, Tools and techniques, CrossMark

  30. Wawrzynek P, Ingraffea A (1994) Franc2D: a two-dimensional crack propagation simulator. Tutorial and User’s Guide, Version 2.7, NASA contractor report 4572

  31. Iesulauro E (1995) Franc2D/L A crack propagation simulation for plane layered structures. Version 1.5 user’s guide. Cornell University, Ithaca, New York

  32. Iesulauro E (2002) Franc2D/L A crack propagation simulator for plane layered materials. Cornell University, Ithaca, New York

  33. Wawrzynek P, Martha L (1997) CASCA: a simple 2-D mesh generator, version 1.4 user’s guide. Cornell University, Ithaca, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Daoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoud, L., Belhamzaoui, A. & Amirat, A. Comparison between IEF model and numerical method based on the derivation method of Bridgman to evaluating fracture toughness in galvanized steel sheet. Int J Adv Manuf Technol 92, 569–581 (2017). https://doi.org/10.1007/s00170-017-0097-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0097-4

Keywords

Navigation