Skip to main content
Log in

Parameter optimisation of friction stir welded dissimilar polymers joints

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

There has been a significant increase in the use of polymeric materials in various areas of industry and engineering, which were previously dominated by metallic components. Recently, the possibility of implementing friction stir welding (FSW) technology for welding polymer-polymer and polymer-metal has come under investigation. Polymeric materials behave differently from metallic ones, and there is still a limited number of research works in the literature concerning this specific topic. In this study, a stationary shoulder made of Teflon was used to weld thin plates of polypropylene and polyethylene together in the lap-joint configuration without external heating. Using a stationary shoulder, the probe generates all the frictional heat and stirs the nearly molten material under an axial force. This article is focused on parameter optimisation for friction stir welded lap joints of dissimilar polymers using a new tool concept. It was concluded that the tool design has the most effective role regarding the lap-shear strength of joints. Welds fabricated with the optimised welding parameters present good surface quality and strength. Moreover, for welding polymeric materials with this method, the main defects have been found on the retreating side of the welds. This behaviour can be explained by insufficient heat generation on the retreating side as well as poor thermal conductivity of polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED (1997) Friction stir welding for the transportation industries. Mater Des 18:269–273. doi:10.1016/S0261-3069(97)00062-9

    Article  Google Scholar 

  2. Kallee SW (2010) 5—Industrial applications of friction stir welding A2. In: Lohwasser, Daniela (ed). Friction stir welding. pp 118–163 doi:10.1533/9781845697716.1.118.

  3. Amini A, Asadi P, Zolghadr P (2014) 15—Friction stir welding applications in industry. In: Advances in friction-stir welding and processing. pp 671–722 doi:10.1533/9780857094551.671

  4. Shah S, Tosunoglu S (2012) Friction stir welding: current state of the art and future prospects. In: 16th World Multi-conference on Systemics, Cybernetics and Informatics, Orlando, pp 17–20

  5. Ahmadi H et al (2012) Influence of pin profile on quality of friction stir lap welds in carbon fiber reinforced polypropylene composite. Int J Mech Appl 2:24–28. doi:10.5923/j.mechanics.20120203.01

    Google Scholar 

  6. Bisadi H, Tour M, Tavakoli A (2012) The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 alloy lap joint. Am J Mater Sci 1:93–97. doi:10.5923/j.materials.20110102.15

    Article  Google Scholar 

  7. Bozkurt Y (2012) The optimization of friction stir welding process parameters to achieve maximum tensile strength in polyethylene sheets. Mater Des 35:440–445. doi:10.1016/j.matdes.2011.09.008

    Article  Google Scholar 

  8. Eslami S et al (2015) Shoulder design developments for FSW lap joints of dissimilar polymers. J Manuf Process 20(Part 1):15–23. doi:10.1016/j.jmapro.2015.09.013

    Article  Google Scholar 

  9. Bagheri A, Azdast T, Doniavi A (2013) An experimental study on mechanical properties of friction stir welded ABS sheets. Mater Des 43:402–409. doi:10.1016/j.matdes.2012.06.059

    Article  Google Scholar 

  10. Nelson TW, Sorenson CD, Johns CJ (2004) Friction stir welding of polymeric materials. Google Patents

  11. Liu FC, Liao J, Nakata K (2014) Joining of metal to plastic using friction lap welding. Mater Des 54:236–244. doi:10.1016/j.matdes.2013.08.056

    Article  Google Scholar 

  12. Moshwan R et al (2015) Dissimilar friction stir welding between polycarbonate and AA 7075 aluminum alloy. Int J Mater Res 106:258–266. doi:10.3139/146.111172

    Article  Google Scholar 

  13. Rezgui MA et al (2010) Application of Taguchi approach to optimize friction stir welding parameters of polyethylene. EPJ Web Conf 6:07003. doi:10.1051/epjconf/20100607003

    Article  Google Scholar 

  14. Strand SR (2004) Effects of friction stir welding on polymer microstructure.

  15. Scialpi A et al (2009) Viblade™: friction stir welding for plastics. Weld Int 23:846–855. doi:10.1080/09507110902843271

    Article  Google Scholar 

  16. Mendes N et al (2014) Effect of friction stir welding parameters on morphology and strength of acrylonitrile butadiene styrene plate welds. Mater Des 58:457–464. doi:10.1016/j.matdes.2014.02.036

    Article  Google Scholar 

  17. Hamilton C et al (2012) A coupled thermal/material flow model of friction stir welding applied to Sc-modified aluminum alloys. Metall Mater Trans A 44:1730–1740. doi:10.1007/s11661-012-1512-y

    Article  Google Scholar 

  18. Simões F, Rodrigues DM (2014) Material flow and thermo-mechanical conditions during friction stir welding of polymers: literature review, experimental results and empirical analysis. Mater Des 59:344–351. doi:10.1016/j.matdes.2013.12.038

    Article  Google Scholar 

  19. Eslami S et al (2015) Effect of friction stir welding parameters with newly developed tool for lap joint of dissimilar polymers. Procedia Eng 114:199–207. doi:10.1016/j.proeng.2015.08.059

    Article  Google Scholar 

  20. Taguchi G et al (1987) Orthogonal arrays and linear graphs: tools for quality engineering. American Supplier Institute, Nasr City

    Google Scholar 

  21. D638 AS (2010) Standard test method for tensile properties of plastics. ASTM International, West Conshohocken. doi:10.1520/d0638-14

    Google Scholar 

  22. Fersini D, Pirondi A (2007) Fatigue behaviour of Al2024-T3 friction stir welded lap joints. Eng Fract Mech 74:468–480. doi:10.1016/j.engfracmech.2006.07.010

    Article  Google Scholar 

  23. Panneerselvam K, Lenin K (2013) Effects and defects of the polypropylene plate for different parameters in friction stir welding process. Taper 40:1500

    Google Scholar 

  24. Abdelrahman M et al. (2012) The effect of FSW tool geometry on AA6061-T6 weldments.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shayan Eslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eslami, S., de Figueiredo, M.A.V., Tavares, P.J. et al. Parameter optimisation of friction stir welded dissimilar polymers joints. Int J Adv Manuf Technol 94, 1759–1770 (2018). https://doi.org/10.1007/s00170-017-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0043-5

Keywords

Navigation