Advertisement

Influence of process parameters on surface topography in ultrasonic vibration- assisted end grinding of SiCp/Al composites

  • Wei Zheng
  • Ming ZhouEmail author
  • Li Zhou
ORIGINAL ARTICLE

Abstract

The surface quality in ultrasonic vibration-assisted end grinding of SiCp/Al composites is important as it influences the performance of the finished surface to a great extent. This paper presents a comprehensive analysis to characterize the machined surface topography with 3D surface roughness (S q, S sk, and S tr) and 3D surface dimension D s. The results show that the main factors influencing surface roughness S q is the spindle speed and followed by vibration amplitude, cutting depth, and feed rate. Surface fractal dimension D s represents the ability of space filling of the machined surface and shows a weak-negative correlation with surface roughness S q. Compared with S q, D s is more sensitive to the pit which is the main defect of machined surface. A large value of surface fractal dimension D s corresponds to a better and exquisite surface finish. The main factors effecting the surface fractal dimension D s are spindle speed and feed rate, and influencing degree of these two factors is similar. The influence order of process parameters on D s is: feed rate > spindle speed > vibration amplitude > cutting depth.

Keywords

Ultrasonic vibration-assisted end grinding Surface topography SiCp/Al composites 3D surface roughness 3D surface fractal dimension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou M, Zheng W (2016) A model for grinding forces prediction in ultrasonic vibration assisted grinding of SiCp/Al composites. Int J Adv Manuf Technol 87 (9):3211-3224. doi: 10.1007/s00170-016-8726-x
  2. 2.
    Kannan S, Kishawy HA (2006) Surface characteristics of machined aluminium metal matrix composites. Int J Mach Tools Manuf 46(15):2017–2025. doi: 10.1016/j.ijmachtools.2006.01.003 CrossRefGoogle Scholar
  3. 3.
    Dabade UA, Joshi SS, Balasubramaniam R, Bhanuprasad VV (2007) Surface finish and integrity of machined surfaces on AI/SiCp composites. J Mater Process Technol 192:166–174. doi: 10.1016/j.jmatprotec.2007.04.044 CrossRefGoogle Scholar
  4. 4.
    Palanikumar K, Karthikeyan R (2007) Assessment of factors influencing surface roughness on the machining of Al/SiC particulate composites. Mater Des 28(5):1584–1591. doi: 10.1016/j.matdes.2006.02.010 CrossRefGoogle Scholar
  5. 5.
    Ge YF, Xu JH, Yang H, Luo SB, Fu Y (2008) Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol 203(1–3):166–175. doi: 10.1016/j.jmatprotec.2007.09.070 CrossRefGoogle Scholar
  6. 6.
    Ozben T, Kilickap E, Cakir O (2008) Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. J Mater Process Technol 198(1–3):220–225. doi: 10.1016/j.jmatprotec.2007.06.082 CrossRefGoogle Scholar
  7. 7.
    Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tools Manuf 48(15):1613–1625. doi: 10.1016/j.ijmachtools.2008.07.008 CrossRefGoogle Scholar
  8. 8.
    Reddy NSK, Kwang-Sup S, Yang MY (2008) Experimental study of surface integrity during end milling of Al/SiC particulate metal-matrix composites. J Mater Process Technol 201(1–3):574–579. doi: 10.1016/j.jmatprotec.2007.11.280 CrossRefGoogle Scholar
  9. 9.
    Kannan S, Kishawy HA, Deiab I (2009) Cutting forces and TEM analysis of the generated surface during machining metal matrix composites. J Mater Process Technol 209(5):2260–2269. doi: 10.1016/j.jmatprotec.2008.05.025 CrossRefGoogle Scholar
  10. 10.
    Bhushan RK, Kumar S, Das S (2010) Effect of machining parameters on surface roughness and tool wear for 7075 Al alloy SiC composite. Int J Adv Manuf Technol 50(5–8):459–469. doi: 10.1007/s00170-010-2529-2 CrossRefGoogle Scholar
  11. 11.
    Dong GJ, Zhang HJ, Zhou M, Zhang YJ (2013) Experimental investigation on ultrasonic vibration-assisted turning of SiCp/Al composites. Mater Manuf Process 28(9):999–1002. doi: 10.1080/10426914.2012.709338 Google Scholar
  12. 12.
    Zhou L, Huang ST, Yu XL (2014) Machining characteristics in cryogenic grinding of SiCp/Al composites. Acta Metall Sin-Engl Lett 27(5):869–874. doi: 10.1007/s40195-014-0126-3 CrossRefGoogle Scholar
  13. 13.
    Li JG, Du JG, Yao YX, Hao ZP, Liu X (2014) Experimental study of machinability in mill-grinding of SiCp/Al composites. J Wuhan Univ Technol-Mat Sci Edit 29(6):1104–1110. doi: 10.1007/s11595-014-1050-0 CrossRefGoogle Scholar
  14. 14.
    Bian R, He N, Li L, Zhan ZB, Wu Q, Shi ZY (2014) Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol 71(1–4):411–419. doi: 10.1007/s00170-013-5494-8 CrossRefGoogle Scholar
  15. 15.
    Yang YF, Wu Q, Zhan ZB, Li L, He N, Shrestha R (2015) An experimental study on milling of high-volume fraction SiCP/Al composites with PCD tools of different grain size. Int J Adv Manuf Technol 79(9–12):1699–1705. doi: 10.1007/s00170-015-6901-0 CrossRefGoogle Scholar
  16. 16.
    Zhou M, Wang M, Dong GJ (2015) Experimental investigation on rotary ultrasonic face grinding of SiCp/Al composites. Mater Manuf Process 31(5):673–678. doi: 10.1080/10426914.2015.1025962 CrossRefGoogle Scholar
  17. 17.
    Yu XL, Huang ST, Xu LF (2016) ELID grinding characteristics of SiCp/Al composites. Int J Adv Manuf Technol 86(5–8):1165–1171. doi: 10.1007/s00170-015-8235-3 Google Scholar
  18. 18.
    Wang YJ, Huang HB, Chen LG, Sun LN (2014) Choice of reference surfaces for machined surface roughness in milling of SiCp/Al composites. J Cent South Univ 21(11):4150–4156. doi: 10.1007/s11771-014-2410-9 CrossRefGoogle Scholar
  19. 19.
    Miao Q, Ding WF, Xu JH, Yang CY, Fu YC (2013) Fractal analysis of wear topography of brazed polycrystalline cBN abrasive grains during grinding nickel super alloy. Int J Adv Manuf Technol 68(9–12):2229–2236. doi: 10.1007/s00170-013-4823-2 CrossRefGoogle Scholar
  20. 20.
    Zheng GM, Zhao J, Li ZY, Cheng X, Li L (2014) Fractal characterization of the friction forces of a graded ceramic tool material. Int J Adv Manuf Technol 74(5–8):707–714. doi: 10.1007/s00170-014-6030-1 CrossRefGoogle Scholar
  21. 21.
    Zhu YJ, Ding WF, Xu JH, Fu YC (2015) Surface fractal evolution of fracture behavior of polycrystalline cBN grains in high-speed grinding. Int J Adv Manuf Technol 76(9–12):1505–1513. doi: 10.1007/s00170-014-6369-3 CrossRefGoogle Scholar
  22. 22.
    Wang T, Xie LJ, Wang XB, Shang TY (2015) 2D and 3D milled surface roughness of high volume fraction SiCp/Al composites. Def Technol 11(2):104–109. doi: 10.1016/j.dt.2015.01.001 CrossRefGoogle Scholar
  23. 23.
    Muguthu JN, Gao D (2013) Profile fractal dimension and dimensional accuracy analysis in machining metal matrix composites (MMCs). Mater Manuf Process 28(10):1102–1109. doi: 10.1080/10426914.2013.823501 CrossRefGoogle Scholar
  24. 24.
    ISO 25178–2, Geometrical product specifications (GPS)—surface texture: areal—part 2: terms, definitions and surface texture parameters (2012).Google Scholar
  25. 25.
    Liang XH, Lin B, Han XS, Chen SG (2012) Fractal analysis of engineering ceramics ground surface. Appl Surf Sci 258(17):6406–6415. doi: 10.1016/j.apsusc.2012.03.050 CrossRefGoogle Scholar
  26. 26.
    Sahoo P, Barman T, Davim JP (2011) Fractal analysis in machining, vol 3. Springer Science & Business Media, LondonGoogle Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinPR China

Personalised recommendations